Clumps of dark matter could be lurking undetected in our galaxy

A hypothetical ‘dark’ force could allow clouds of invisible particles to collapse into small structures

dark matter halo

DARK COLLAPSE  Dark matter is normally thought to form a spherical halo (illustrated in blue) around galaxies like the Milky Way. Two physicists suggest that dark matter could collapse into more complex structures.

L. Calçada/ESO (CC BY 4.0)

Clumps of dark matter may be sailing through the Milky Way and other galaxies.

Typically thought to form featureless blobs surrounding entire galaxies, dark matter could also collapse into smaller clumps — similar to normal matter condensing into stars and planets — a new study proposes. Thousands of collapsed dark clumps could constitute 10 percent of the Milky Way’s dark matter, researchers from Rutgers University in Piscataway, N.J., report in a paper accepted in Physical Review Letters.

Dark matter is necessary to explain the motions of stars in galaxies. Without an extra source of mass, astronomers can’t explain why stars move at the speeds they do. Such observations suggest that a spherical “halo” of invisible, unidentified massive particles surrounds each galaxy.

But the halo might be only part of the story. “We don’t really know what dark matter at smaller scales is doing,” says theoretical physicist Matthew Buckley, who coauthored the study with physicist Anthony DiFranzo. More complex structures might be hiding within the halo.

To collapse, dark matter would need a way to lose energy, slowing particles as gravity pulls them into the center of the clump, so they can glom on to one another rather than zipping right through. In normal matter, this energy loss occurs via electromagnetic interactions. But the most commonly proposed type of dark matter particles, weakly interacting massive particles, or WIMPs, have no such way to lose energy.

Buckley and DiFranzo imagined what might happen if an analogous “dark electromagnetism” allowed dark matter particles to interact and radiate energy. The researchers considered how dark matter would behave if it were like a pared-down version of normal matter, composed of two types of charged particles — a dark proton and a dark electron. Those particles could interact — forming dark atoms, for example — and radiate energy in the form of dark photons, a dark matter analog to particles of light.

The researchers found that small clouds of such dark matter could collapse, but larger clouds, the mass of the Milky Way, for example, couldn’t — they have too much energy to get rid of. This finding means that the Milky Way could harbor a vast halo, with a sprinkling of dark matter clumps within. By picking particular masses for the hypothetical particles, the researchers were able to calculate the number and sizes of clumps that could be floating through the Milky Way. Varying the choice of masses led to different levels of clumpiness.

In Buckley and DiFranzo’s scenario, the dark matter can’t squish down to the size of a star. Before the clumps get that small, they reach a point where they can’t lose any more energy. So a single clump might be hundreds of light-years across.

The result, says theoretical astrophysicist Dan Hooper of Fermilab in Batavia, Ill., is “interesting and novel … but it also leaves a lot of open questions.” Without knowing more about dark matter, it’s hard to predict what kind of clumps it might actually form.

Scientists have looked for the gravitational effects of unidentified, star-sized objects, which could be made either of normal matter or dark matter, known as massive compact halo objects, or MACHOs. But such objects turned out to be too rare to make up a significant fraction of dark matter. On the other hand, says Hooper, “what if these things collapse to solar system‒sized objects?” Such larger clumps haven’t have been ruled out yet.

By looking for the effects of unexplained gravitational tugs on stars, scientists may be able to determine whether galaxies are littered with dark matter clumps. “Because we didn’t think these things were a possibility, I don’t think people have looked,” Buckley says. “It was a blind spot.”

Up until now, most scientists have focused on WIMPs. But after decades of searching in sophisticated detectors, there’s no sign of the particles (SN: 11/12/16, p. 14). As a result, says theoretical physicist Hai-Bo Yu of the University of California, Riverside, “there’s a movement in the community.” Scientists are now exploring new ideas for what dark matter might be.

Physics writer Emily Conover has a Ph.D. in physics from the University of Chicago. She is a two-time winner of the D.C. Science Writers’ Association Newsbrief award.

More Stories from Science News on Particle Physics

From the Nature Index

Paid Content