Neutrino experiment may hint at why matter rules the universe | Science News

SUPPORT SCIENCE NEWS

Science News is a nonprofit.

Help us keep you informed.


News in Brief

Neutrino experiment may hint at why matter rules the universe

It could take until 2026 to build stronger evidence for what happened to antimatter

By
2:00pm, August 8, 2017
T2K experiment

NEUTRINO CLUES  The T2K experiment found clues that neutrinos may behave differently than their antimatter partners. In a possible sighting of an electron neutrino at the Super-Kamiokande detector in Hida, Japan (shown), colored spots represent sensors that observed light from the interacting neutrino.

A new study hints that neutrinos might behave differently than their antimatter counterparts. The result amplifies scientists’ suspicions that the lightweight elementary particles could help explain why the universe has much more matter than antimatter.

In the Big Bang, 13.8 billion years ago, matter and antimatter were created in equal amounts. To tip that balance to the universe’s current, matter-dominated state, matter and antimatter must behave differently, a concept known as CP, or “charge parity,” violation. 

In neutrinos, which come in three types — electron, muon and tau — CP violation can be measured by observing how neutrinos oscillate, or change from one type to another. Researchers with the T2K experiment found that muon neutrinos morphed into electron neutrinos more often than expected, while muon antineutrinos became electron antineutrinos less often. That suggests that

This article is only available to Science News subscribers. Already a subscriber? Log in now. Or subscribe today for full access.

Get Science News headlines by e-mail.

More from this issue of Science News

From the Nature Index Paid Content