A new material harnesses light to deice surfaces

It could be used to coat airplane wings and other surfaces to prevent ice buildup

deicing plane

ICE BE GONE  A new deicing material could reduce ice buildup on plane wings and other surfaces, to curb the use of environmentally unfriendly chemical sprays.

Jim Larrison/Flickr (CC BY 2.0)

A new material that converts light into heat could be laminated onto airplanes, wind turbines, rooftops and offshore oil platforms to help combat ice buildup.

This deicer, called a photothermal trap, has three layers: a top coating of a ceramic-metal mix that turns incoming light into thermal energy, a middle layer of aluminum that spreads this heat across the entire sheet — warming up even areas not bathed in light — and a foam insulation base. The photothermal trap, described online August 31 in Science Advances, can be powered by sunshine or LEDs.

Engineer Susmita Dash of the Indian Institute of Science in Bengaluru and colleagues laid a 6.3-centimeter-wide sheet of the deicing material out in the sun on a day averaging about –3.5° Celsius, alongside a sheet of aluminum. Within four minutes, the photothermal trap heated to about 30° C, while the aluminum warmed to only about 6° C. After five minutes, snow on the surface of the photothermal trap had mostly melted off, but snow remained caked on the aluminum.

Deicing surfaces typically involves energy-intensive heating systems or environmentally unfriendly chemical sprays. By harnessing light to melt ice away, the new photothermal trap may provide a more sustainable means of keeping surfaces ice-free. “This is a new direction for anti-icing,” says Kevin Golovin, a materials scientist and engineer at the University of British Columbia in Kelowna not involved in the work.

Previously the staff writer for physical sciences at Science News, Maria Temming is the assistant managing editor at Science News Explores. She has bachelor's degrees in physics and English, and a master's in science writing.

More Stories from Science News on Materials Science