Stimulating nerve cells stretches time between thinking, doing

Study provides clues to internal decision making

BRAIN BUZZ  Using transcranial direct current stimulation, or tDCS, to zap two brain areas prompted people to report that their intent to click a mouse arose earlier than those of people who didn’t receive tDCS (top bar) or who had the supplementary motor area stimulated. 

Source: Z. Douglas et al/Journal of Neuroscience 2015; adapted by E. Otwell

A zap to the head can stretch the time between intention and action, a new study finds. The results help illuminate how intentions arise in the brain.

The study, published in the May 6 Journal of Neuroscience, “provides fascinating new clues” about the process of internal decision making, says neuroscientist Gabriel Kreiman of Harvard University. These sorts of studies are bringing scientists closer to “probing some of the fundamental questions about who we are and why we do what we do,” he says.   

Figuring out how the brain generates a sense of control may also have implications for people who lack those feelings. People with alien hand syndrome, psychogenic movement disorders and schizophrenia can experience a troubling disconnect between intention and action, says study coauthor Biyu Jade He of the National Institutes of Health in Bethesda, Md.

In the study, the researchers manipulated people’s intentions without changing their actions. The researchers told participants to click a mouse whenever the urge struck. Participants estimated when their intention to click first arose by monitoring a dot’s position on a clockface.

Intention to click usually preceded the action by 188 milliseconds on average, the team found. But a session of transcranial direct current stimulation, or tDCS, moved the realization of intention even earlier, stretching time out between awareness of intention and the action.  tDCS electrodes delivered a mild electrical zap to participants’ heads, dialing up the activity of carefully targeted nerve cells. After stimulation, intentions arrived about 60 to 70 milliseconds sooner than usual. tDCS seemed to change certain kinds of brain activity that may have influenced the time shift, EEG recordings suggested.

The results highlight how thoughts and intentions can be separated from the action itself, a situation that appears to raise thorny questions about free will. But these tDCS zaps didn’t change the action outcome or participants’ feelings of control, only the reported timing of a person’s conscious intention. 

Laura Sanders is the neuroscience writer. She holds a Ph.D. in molecular biology from the University of Southern California.

More Stories from Science News on Neuroscience

From the Nature Index

Paid Content