Tiny glasses help reveal how praying mantises can see in 3-D | Science News


Science News is a nonprofit.

Support us by subscribing now.

Science Visualized

Tiny glasses help reveal how praying mantises can see in 3-D

Newfound nerve cells in the insects’ brains play a role in depth perception

10:00am, July 12, 2019
praying mantis

LIFE IN 3-D  Colored filters let a praying mantis watch a 3-D video of a moving disk while researchers studied the nerve cells that contribute to the insect’s depth perception.

Sponsor Message

A praying mantis depends on precision targeting when hunting insects. Now, scientists have identified nerve cells that help calculate the depth perception required for these predators’ surgical strikes.

In addition to providing clues about insect vision, the principles of these cells’ behavior, described June 28 in Nature Communications, may also lead to advances in robot vision or other automated systems.

So far, praying mantises are the only insects known to be able to see in 3-D.  In the new study, neuroscientist Ronny Rosner of Newcastle University in England and colleagues used a tiny theater that played praying mantises’ favorite films — moving disks that mimic bugs. The disks appeared in three dimensions because the insects’ eyes were covered with different colored filters, creating minuscule 3-D glasses.

As a praying mantis watched the films, electrodes monitored the behavior of individual nerve cells in the optic lobe, a brain structure responsible for many aspects of vision. There, researchers found four types of nerve cells that seem to help merge the two different views from each eye into a complete 3-D picture, a skill that human vision cells use to sense depth, too.

One cell type called a TAOpro neuron possesses three elaborate, fan-shaped bundles that receive incoming visual information. Along with the three other cell types, TAOpro neurons are active when each eye’s view of an object is different, a mismatch that’s needed for depth perception.  

The details of the various types of nerve cells, and how they might receive, combine and send visual information, suggest that these insects’ vision may be more sophisticated than some scientists had thought, the team writes. And the principles guiding praying mantis depth perception may be useful to researchers working on improving machine vision, perhaps allowing artificial systems to better sense the depths of objects.   


R. Rosner et al. A neuronal correlate of insect stereopsis. Nature Communications. Vol. 10, June 28, 2019. doi: 10.1038/s41467-019-10721-z.

Further Reading

L. Sanders. Vision cells can pull double duty in the brain, detecting both color and shape. Science News Online, July 1, 2019.

A. Dance. Bat brain signals illuminate navigation in the dark. Science News. Vol. 192, September 30, 2017, p. 22.

Get Science News headlines by e-mail.

More on Nobels 2017

From the Nature Index Paid Content