Protozoa Aid Food-Poisoning Germs | Science News


Science News is a nonprofit.

Support us by subscribing now.

Food for Thought

Janet Raloff
Food for Thought

Protozoa Aid Food-Poisoning Germs

Sponsor Message

Seemingly innocent microorganisms may have harmful consequences: Ubiquitous waterborne protozoa appear capable of aiding the survival of several types of bacteria responsible for gut-wrenching food poisoning.

Maria T. Brandl and her colleagues focused on protozoa known as Tetrahymena after finding copious quantities of these renowned bacteria eaters in water from a California field—an environment in which pathogens, such as Salmonella, might be shed by livestock. In the lab, the researchers fed Salmonella to the protozoa and watched to see if they'd eliminate the germs. As expected, the predators gobbled up the bacteria and then neatly encased them within digestive organs known as vacuoles.

However, the Agriculture Department microbiologist found, the voracious bacteria eaters weren't able to digest their lunch, so they just left it bundled inside the now-protective vacuole. Eventually, the Tetrahymena ejected the germ-filled sacs into the water.

Earlier research by others showed that amoebas can encase some toxic bacteria—such as those responsible for Legionnaires' disease—in similarly protective cysts. If those cysts become airborne, they can transmit disease.

"What we've shown here," Brandl told Science News Online, "is that a different protozoan, using an entirely different mechanism, can shield foodborne pathogens in a protective structure." Indeed, she notes, the germ-filled sacs released by Tetrahymena are more likely to rupture and spill their toxic contents to the environment than are an amoeba's cysts.

Even more disturbing, follow-up studies by Brandl's team at their Agricultural Research Service lab in Albany, Calif., demonstrated that Tetrahymena-packaged germs are especially resistant to chlorine, normally a good agent for killing waterborne germs. What this indicates, she says, is that the protozoa's failed attempt to eat the bacteria renders the germs better able to survive environmental assaults—including ultraviolet radiation, high temperatures, and germicidal chemicals.

Not all germs benefit

To gauge how universal Tetrahymena's germ-protection role might be, Brandl's group fed a colony of the protozoan another germ that's a major food poisoner, Listeria monocytogenes. Again, the protozoa gobbled up the bacterial feast, but this time they digested the meal.

In a follow-up study, the scientists offered more of the protozoan yet another enticing course—Escherichia coli O157:H7, a particularly nasty bacterium in terms of human-gastrointestinal illness. As it did the Salmonella, the protozoan gobbled up the E. coli germs but failed to kill them. Instead, the Tetrahymena again encased the live germs in protective sacs and spit them out.

The microbiologists are now investing what characteristics of E. coli and Salmonella permit these germs to shut down the protozoan's digestive process. The Albany researchers are also about to begin studies to find any genes that might be turned on in these germs as a result of incubation in the sacs. "We want to know if the experience of being in this vacuole upregulates a whole set of virulence traits that make the [surviving] bacteria more infectious," Brandl says.

She stresses that all her studies in this area have been done with cells growing in water, not in animals. Consequently, she notes, her team hasn't proved that livestock ingesting sacs of germs from a tainted watering trough or paddock puddle would become infected—"although it's very likely." Meat from animals infected with Salmonella and E. coli can carry these germs into the kitchen.


Maria Brandl

Produce Safety and Microbiology Research Unit


800 Buchanan Street

Albany, CA 94710
Further Reading

Pons, L. 2006. Protozoa: An animal-research first. Agricultural Research 54(February):6-7. Available at [Go to].

Raloff, J. 2001. Retail meats host drug-resistant bacteria. Science News 160(Oct. 20):246. Available at [Go to].

______. 2001. Germ-fighting germs. Science News Online (Aug. 18). Available at [Go to].

______. 2001. Antibiotic resistance is coming to dinner. Science News 159(May 26):325. Available to subscribers at [Go to].

______. 2000. Sickening food. Science News Online (Jan. 1). Available at [Go to].

______. 1999. Food poisoning: Sprouts linked to bouts. Science News 155(Jan. 23):63. References and sources available at [Go to].

______. 1998. Livestock's role in antibiotic resistance. Science News 154(July 18):39. Available at [Go to].

______. 1998. Wash-resistant bacteria taint foods. Science News 153(May 30):340. Available at [Go to].

______. 1998. Staging germ warfare in foods. Science News 153(Feb. 7):89-90. Available at [Go to].

______. 1996. Tracking and tackling foodborne germs. Science News 149(May 25):326. Available at [Go to].

Schubert, C. 2001. Busting the gut busters. 160(Aug. 4):74-76. Available at [Go to].

Travis, J. 2000. E. coli toxin shows its deadly touch. Science News 158(July 22):53. Available at [Go to].

Get Science News headlines by e-mail.

More from Science News

From the Nature Index Paid Content