piration, evaporation, transpiration and heat exchange. SPAM has found, for example, that changing the leaf angle of a crop would not have nearly as much impact on net photosynthesis as some other factors, and plant breeders and agronomists are already putting this discovery to practical use. SPAM predictions about evaporation also hold practical value for hydrology, forestry, agriculture and water-resource planning. But although SPAM can predict net photosynthesis (net carbon dioxide uptake), it cannot serve as a model for plant growth or crop yield. Net photosynthesis is the major component of growth and yield, but not the only relevant factor.

There has been talk in some quarters about using carbon dioxide from sewage or industrial outfalls as a crop fertilizer, provided the compound can be made economically available for this purpose. SPAM has come up with some predictions that could influence any decisions in this direction. While directly fertilizing plants with generous amounts of CO2 could increase midday photosynthesis up to 45 percent, most of the CO2 would be lost to the atmosphere. Hence such application would not be economical. The atmosphere supplies crops with 80 to 90 percent of the CO2 they need for normal growth under normal CO, evolution from the soil.

If the carbon dioxide emitted into the atmosphere from burning fossil fuels continues to increase at the rate it is going for the next hundred years, plant photosynthesis at that time, SPAM predicts, would be 10 to 20 percent higher than it is today. Such a bonus for photosynthesis from chemical pollution is also hinted at in a report issued by the Institute of Ecology (SN: 10/9/71, p. 244). This report states that CO2 levels in the atmosphere are rising and that laboratory studies show a linear relation between photosynthetic rates and CO2 levels. Hence manmade increases in CO2 are expected to enhance photosynthesis in terrestrial vegetation.

A morning-after pill

A morning-after pill has long been sought as an emergency method of contraception. It would be useful in cases of rape and when other means of contraception failed or were not used.

Such a medication may now be possible says Lucile Kirtland Kuchera of the University of Michigan Health Service in Ann Arbor. She reports in the Oct. 25 JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION that 1,000 women of child-bearing age were given, within 72 hours of intercourse, 25 milligrams of diethylstilbestrol

twice daily for five days. Of the 1,000, 890 had used no form of contraception. No pregnancies resulted. Under normal circumstances the probability of conception from a single act of coitus is between 1 in 50 and 1 in 25.

The drug however does have side effects in some cases. Among the minor side effects are nausea, headache, vaginal spotting, dizziness and diarrhea. But, the report states, no serious side effect was known in any of the 1,000 cases while taking the drug or afterward. And 45.2 percent of the patients had virtually no side effects.

Man and marine ecology: Crisis in the estuaries

Much of the world's population is concentrated in coastal cities. The interiors of continents—America, Asia, Africa, Australia—are sparsely populated by comparison. (Europe is a peninsula full of embayments and estuaries.)

This concentration is cited by W. Frank Blair of the University of Texas (and chairman of the U.S. Committee for the International Biological Program) as a conspicuous example of the failure of ecological planning in the past and an important area where the future demands such planning. "It is my firm belief," Blair told the National Biological Conference of the American Institute of Biological Sciences in Miami Beach this week, "that the final three decades of this century will be a crucial period respecting man's future as a passenger on spaceship earth. It must be a period of ecological planning."

Lack of such planning in the past, says Blair, resulted in a system of dams that trap the fresh-water outflow from the continent. The result is an upset of salinity regimes in the estuaries that acts to the detriment of these, the most biologically productive sections of the marine ecosystem.

To add insult to injury, estuarine areas are polluted with municipal and industrial wastes. Much of this pollution comes from petroleum and its products. Although there have been some optimistic reports lately on the long-term effects of specific oil spills, the evidence gathered over the past two years by Max Blumer of Woods Hole Oceanographic Institution after a spill at West Falmouth, Mass., seems still valid (SN: 3/14/70, p. 263): The effects are probably severe and widespread but often subtle and insidious and by no means fully understood.

The problem is that petroleum, though it is an organic material, has been sequestered geologically. According to R. E. Kallio of the University of Illinois, crude oil contains between

50,000 and a million complex organic compounds that may not be amenable to biodegradation. Microorganisms capable of degrading the compounds have never evolved because microorganisms have never been exposed to them.

"Will the organisms be able to evolve the enzymes necessary" to attack these unfamiliar compounds and thus remove them from the marine food chains, Kallio asks. Nobody knows the answer.

If the compounds—particularly the "heavy end" fractions made of large cyclic hydrocarbons—are not degraded, marine biological disasters may result. Blumer turned up strong indications that most petroleum hydrocarbons are quite toxic, but there are so many that it will take a large research effort to identify them all, let alone measure their ecological effects. Some of them are similar to synthetic compounds that are carcinogenic. And Kallio warns that certain of these hydrocarbons even in very small quantities may interfere with chemical signals between say, predators and prey.

Some petroleum compounds that do biodegrade do so over "a much longer time than anticipated," says Kallio, citing recent work at the University of Illinois. Outside the laboratory, in cold Arctic waters for example, the rate of degradation could be slower.

In the face of such problems the outlook for rational land-use planning in estuaries and coastal wetlands is dim, according to George P. Spinner of Deltona Corp. Only Delaware among East Coast states has zoned its coasts for natural-resource protection as well as industrial development, he says. The cost of reclaiming already damaged areas is immense, he adds—about half a million dollars to clean up only 70 miles of the Delaware River for one example.

Lack of data is a serious problem in planning for coastal areas, as it is in other branches of the ecological sciences. "In some parts of the zone no one has even compiled a list of the fish that inhabit the area," Spinner says. In contrast to this approach, engineers have made precise analyses of the "kilowatt-hours or tons of steel or gallons of water" a given population will require. Fisheries scientists must begin to make the same kind of input to the planning process, he opines, by telling planning agencies how many bays, marshes and estuaries must be preserved as breeding grounds for marine

In this—as in other ecological problems—the major obstacle, says Blair, may be that "the ethic that all growth is good and that an equilibrium or steady-state system is bad will die hard in the United States."

october 30, 1971 293