
Stars of March

		Cl	ELESTIAL	TIME TABLE
March	4	4:20	p.m. EDT	Moon in last quarter
	8	11:00	p.m.	Moon passes north of Mars (visible low in east before sunrise)
	10	2:10	a.m.	Algol (variable star in Perseus) at minimum brightness
	11	1:00	a.m.	Moon farthest, distance 252,700 miles
	12	7:47	p.m.	New Moon
1		11:00	p.m.	Algol at minimum
	15	5:00	p.m.	Moon passes north of Venus
l			p.m.	Algol at minimum
l			p.m.	Moon in first quarter
	21	1:57	a.m.	Sun above equator, spring begins in northern hemisphere
		2:00	p.m.	Moon passes south of Saturn
1		10:00	p.m.	Jupiter behind Sun
	26	5:00	a.m.	Moon nearest, distance 222,900 miles
	27	6:36	a.m.	Full Moon

by James Stokley

Venus, which shines in the west after sunset, is the brightest planet of the March evening sky. Becoming visible while the sky is still quite bright, it sets on March 1 about two hours after the sun, but by the month's end this has increased to nearly three hours. Venus is more than six times as bright as the most prominent star, Sirius, in the southwest in Canis Major.

Saturn is another prominent planet on March evenings, high in the west in the constellation of Gemini. Only about a twenty-fifth as bright as Venus, it exceeds all but four of the stars now visible.

In the first few days of March you may also get a glimpse of Jupiter very low in the western twilight. On March 21

it passes behind the sun and becomes a morning star. During the spring it will shine brightly in the eastern sky before the sun rises.

Observers in the United States can now see in the evening sky more bright stars (those of the first magnitude or brighter) than at any other time of year. Fifteen such stars are visible during the year from the parallel of 40° north latitude, which crosses the middle of the nation.

Ten of these are above the horizon at the times for which our March maps are drawn (11 p.m. local DST on March 1 and 9 p.m. on the 31st) although several are quite low. Seven are in the west and southwest, the richest area of the sky for first-magnitude stars.

Two are to the right of Sirius in Orion: Betelgeuse above and Rigel below. Moving higher and to the right you come to Taurus, with Aldebaran, and then to Auriga, with Capella. In the west, above Saturn, stands Pollux, the brightest star in Gemini, but Saturn is about 2.5 times as bright. Procyon shines in Canis Minor to the south of Gemini and above Canis Major. Look to the east for Leo, for its brightest star, Regulus. Virgo is below Leo but its brightest star, Spica, is near the horizon where atmospheric absorption dims it considerably. This also is true of Arcturus, actually the second brightest star visible these evenings, which is low in the east in Boötes.

At 1:57 a.m., EDT, on March 21, the sun reaches the halfway point in its move northward, an event that is called the equinox and marks the beginning of our spring.

New Products

Time-lapse photography using Super-8 movie cameras is possible with this intervalometer (timing device), which enables a camera to take pictures automatically at intervals from 1 to 60 seconds. It needs no batteries of its own, since it is powered from the current in the single-frame jack used in many types of electronic Super-8 cameras.

Science Dimensions
Circle No. 170 on Reader Service Card

Moisture content in numerous materials from foods to structural materials to ex-

plosives can be measured with an "aquametry" apparatus which covers a range from 1 part per million to 100 percent water with an accuracy of 1 percent and a reproductibility of 0.5 percent.

Labindustries
Circle No. 26 on Reader Service Card

Scientific equipment from pumps to lyophilization kits is described in "1975 New Products Catalog-1."

Beckman Instruments, Inc. Circle No. 25 on Reader Service Card

Tool kit for field engineers includes more than 120 tools for use in servicing electronic and data-processing equipment and office machines. Packed in an attachestyle carrying case, it includes general tools such as pliers and wrenches, plus optical devices, spring tools and other accessories. An optional test meter is available.

 ${\it Jensen~Tools~and~Alloys} \\ {\it Circle~No.~171~on~Reader~Service~Card}$

Mobile mapping system for hydrographic surveys can be operated from a small boat to provide bottom contours along with temperature and conductivity plots.

ENDECO Circle No. 27 on Reader Service Card

Digital measuring machine, developed for the electronics industry, offers direct readout to .000005" for tasks such as inspecting microcircuit photomasks. To avoid operator alignment errors, a photoelectric "edge detector" electronically indicates when the viewed object is in the proper position for measurement.

 $E. \ \ \textit{Leitz, Inc.}$ Circle No. 30 on Reader Service Card

Science News, Vol. 107

126