Physics Without Limits

Reworking physics without
calculus may not be physics
without tears, but it does
provide some new insights and
philosophical questions

BY DIETRICK E. THOMSEN

Isaac Newton invented the calculus.
He did it in order to lay the foundations
of classical mechanics. (Gottfried Wil-
helm Leibniz also invented the calculus
at the same time and for a similar pur-
pose.) Newton and his contemporaries
were caught up in the contemplation of
continuous processes. They inhabited a
space that looked like a constant
unbroken extension from here to infinity.
Time was an unbroken flow from eter-
nity to eternity.

Newton was bemused by smooth, con-
tinuous unbroken motions like the orbit-
ing of moons and planets. In Leibniz’s
case it was more the flow of heat, but the
principle of continuity is the same. One
might say that their motto was the an-
cient Greek saying ‘‘panta rhei,’ all
things flow (which is in fact the motto of
the modern Society of Rheology), and
the mathematics they developed was de-
signed to deal with continuous processes.
The calculus was such a success that it
has been the basis of classical and a lot of
postclassical physics.

But nature doesn’t always imitate art.
Nature can be very bumpy in places.
What looks continuous, like an iron bar
or a flowing brook, may often, on micro-
scopic examination, turn out to be a
series of lumps. This is not necessarily so
bad; often if a series of lumps come
close enough together, they can be
pushed into a semblance of continuity.
However, if the lumps have kinks and
sudden jumps, very often the con-
tinuous mathematics cannot deal with
them. In a number of practical problems
in applied physics, elements of the actual
situation are disregarded in the calcu-
lations because the mathematics can’t
handle them. This can lead to mathe-
matical models with a rather distant con-
gruence to reality.

The advent of modern computers adds
an even bigger problem. Computers can-
not deal in continuous mathematics;
they must have the discreteness of
arithmetic. So to use computers in
physics, arithmetic versions of the equa-
tions must be devised, even though
these may be only numerical approxima-
tions to the elegant continuities of
calculus.

There is also a pedagogical difficulty.
Children start out in school with
arithmetic. They learn to add discrete
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Computer generated model of molecules in
a heavy gas. Diagram below shows motion
of a light molecule introduced to the gas and
illustrates the property of buoyancy.

(d)

A plunger slowly entering a tube of gas will
merely redistribute the molecules uniformly
(a, b, c). Above a certain speed, the motion
of the plunger forms a shock wave (d).
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oranges to discrete oranges and subtract
discrete pears from discrete pears (if
they’re doing it right). The transition to
calculus with its continuities, its in-
finitesimals, its limits, its instantaneous
derivatives is an intellectual leap. It is the
traditional wisdom of mathematical
pedagogues that this leap is not taken un-
til the last years of secondary instruction
or the first years of college. This puts sec-
ondary school physics instructors in a
bind, because without calculus they are
not in a position to justify many of the
laws and formulas they present, but must
wave their hands and appeal to the
elders. This is a procedure that has al-
ways been likely to generate student
resistance.

The necessity for feeding physics to
computers in ways that they can digest it
started Donald Greenspan of the
Department of Computer Sciences at the
University of Wisconsin at Madison on a
program of reformulating the basic
mathematical statements of physics in
arithmetical terms. He began with basic
Newtonian dynamics, has added fluid
dynamics and continuum mechanics and
is now into special relativity. He reviews
his progress to date in an article in COM-
PUTERS AND MATHEMATICS WITH AP-
PLICATIONS.

Greenspan’s procedure starts with a
tabulation of the data from a physical
event, for example, snapshots of the
position from time to time of a falling ob-
ject. He uses the data to set up equations
for the average velocity of the body over
the intervals between snaps and its accel-
eration. This differs basically from the
calculus procedure, which seeks expres-
sions that will give the instantaneous
value of the body’s velocity at any time.
In fact, one of the basic calculus pro-
cedures, differentiation, was invented to
give meaning and intellectual respec-
tability to such a notion as an instan-
taneous velocity.

Greenspan finds that he can start from
his equations for average values and
derive the basic formulas of Newtonian
dynamics without recourse to calculus.
This is especially true for the conserva-
tion laws, which describe the basic in-
tellectual and philosophical content of
the science. Conservation of energy, for
example, comes out exactly as it does by
calculus methods. The formula is the
same, and what is extremely important,
it comes out independent of the length
of the time interval Greenspan chooses
for his averages, just as the derivation by
calculus methods comes out indepen-
dent of the (continuous and instan-
taneous) time.

This leads Greenspan to suggest that
what he has is not merely an approximate
method useful for training computers,
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Flow of a liquid emerging from a nozzle is laminar at low speed and develops more and more
chaotically as the speed of flow increases. Eventually the motion becomes turbulent.
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but an alternate to the calculus procedure
that has an intellectual rigor of its own. It
raises the philosophical question
whether the notions of continuity and
differentiability that lie at the basis of
much of physics really need to be there.
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It may also provide a respectable alterna-
tive for secondary-school teachers.
When it comes to the dynamics of ag-
gregates, such as metal bars or tubes of
gas, with their many individual
molecules, Greenspan finds he can even

go the calculus methods a few points bet-
ter. It seems that the discreteness of
arithmetic matches the discreteness of
the structures and allows physical factors
to be brought into the mathematics that
the traditional dynamics had to ignore.
Take, for example, the elastic vibration
of a flexible bar. The arithmetic methods
show, counter to the calculus treatment,
that the bar does not swing smoothly, but
flutters up because a wave motion that
travels through the bar is superimposed
on the upward swing. ‘‘Engineers have
been aware, for some time, of such
waves on the surfaces of vibrating
materials,”’ Greenspan writes. It is also
possible to treat the physics of bars with-
out imagining them to be of infinite
length, as traditional continuous for-
mulas often require.

The arithmetit methods can also pro-
vide more realistic models of fluid
behavior, such as liquid spraying through
a nozzle, laminar, vortical and turbulent
flows generally, and even some unusual
splash effects in melting metals.

From classical mechanics, arithmetical
methods can move on into special
relativity. Special relativity represents
both an intellectual and mathematical
complication of classical mechanics. One
must deal with mindbenders like the
constancy of the speed of light and the
conceptual equivalence of mass and
energy. In the traditional treatment, not
only must the dynamical equations be
continuous, but so must the trans-
formation equations by which the
dynamical equations are translated from
terms appropriate to one frame of
reference to those appropriate to another.
And the constancy of the speed of light
in all special-relativistic frames insures
that the transformation equations are not
a relatively trivial part of the theory as
they are in Newtonian dynamics.

Yet Greenspan finds that one can go
from the second grade to the Lorentz
transformation without stopping at
Grandpa Leibniz’s house on the way. He
finds he can derive the basic conser-
vation laws in the forms appropriate to
special relativity. Using arithmetical
methods he can also obtain such
relativistic exotica as E = mc?, the Ein-
steinian law relating force to rate of
change of momentum and the formula
for the increase of mass with velocity.
And he concludes that if you anchor one
frame of reference to the ground and
another in a rocket and install identical
computers in both frames, you can com-
pute with his statement of the Einsteini-
an force law and all the resultant com-
putations would be related by the
Lorentz transformation.

So what appears to be developing here
is not only a method for the care and
feeding of computers, but a challenge to
some of the basic assumptions of tradi-
tional mathematical physics. In the
future, Greenspan hopes to take his
methods into  general relativity,
electromagnetic wave theory and quan-
tum mechanics. O

187



