SCIENCE NEWS OF THE WEEK

The Leakey Footprints: An Uncertain Path

It is unlikely that man's immediate ancestor — now firmly established as having walked eastern Africa at least 3.6 million years ago — had nearly the identity problem his modern-day discoverers have bestowed upon him. It is now generally agreed that this 4- to 5-foot-tall creature walked upright, on two feet, with a human-like body but with a primitive, ape-like skull (too primitive to master anything beyond the simplest tools, if that).

The question, however, over the diagnostic name of the ancestral being, and over whose anthropological evidence most accurately confirms the creature's existence. And the flavor of the disagreement is growing discernibly more hungry this 20th century. Donald Johanson of the Cleveland Museum of Natural History recently identified the being in question as a new species of man — Australopithecus afarensis (SN: 1/20/79, p. 36). Mary D. Leakey disputes Johanson's conclusion and labels his work "not very scientific." Johanson responds that Mary Leakey "really shows a poor appreciation of what evolution is all about."

What has triggered this latest round of controversion is Leakey's reported discovery of a 73-foot-long trail of fossilized, 3.6-million-year-old footprints. Recent analysis of the footprints — frozen in history by a 6-inch layer of volcanic ash hardened by an ancient rain shower — demonstrates that for all that at least 3.6 million years ago, in Pliocene times, man's direct ancestor walked fully upright with a bipedal, free-striding gait," Leakey says. "This is of greatest importance in the story of human evolution."

These footprints were found in the northern Tanzanian area of Laetoli, contains 20 prints of a larger individual — the size of a 10- or 11-year-old present-day boy — and 27 prints of a smaller being, which Leakey and her colleagues think may have been a child in its arms. The discovery of other tracks about a year ago prompted Leakey to say she was 75 percent sure they had been made by a hominid (SN: 3/4/79, p. 132). "Now," she says, "we've got the other 25 percent — plus."

The major key to Leakey's certainty lies in the prints' apparent similarity to human footprints. "The heel is rounded, firmly depressed, and the contour is very human," says Louise Robbins of the University of North Carolina, who analyzed the footprints. "The arch is raised — the smaller individual had a higher arch than I do — and the big toe is large and aligned with the second toe ... the toes grip the ground like human beings. You do not see this in other animal forms."

At a news conference in Washington at the National Geographic Society, which helped fund the research, Leakey and Robbins said the two individuals walked one behind the other — separated by anywhere from a few minutes to a few days. At one point, the smaller one made a half-turn to the left — as if he or she saw or heard something and turned to give a closer look — and then continued on the north-bound path. "It gives the whole thing a very human aspect," says Leakey, who reports her findings in the March 22 Nature and the April National Geographic.

She says the footprints confirm the impression given by skeletal fossils found at Laetoli — as well as by Johanson in the Hadar region of Ethiopia — that a human-like creature walked upright on two legs well before its brain enlarged beyond ape-like proportions (a time lag that both Leakey and Johanson admit is puzzling). Moreover, it seems obvious that bipedalism was well developed by 3.6 million years ago, leading Robbins to estimate that the direct ancestor of man actually evolved 4.6 million years ago, or earlier.

It is with those fossils at both the Laetoli and Hadar sites that Johanson and University of California anthropologist Timothy D. White have reconstructed Australopithecus afarensis. At her press conference, Leakey first refused to discuss Johanson's work. But when pressed, she criticized Johanson and White for lumping together fossil finds at both sites, which are 500,000 to 750,000 years apart (the Laetoli fossils are the older of the two) and separated by 1,000 miles. "They [Johanson and White] are entitled to their opinion," she said. "But it is unfortunate they have referred the Laetoli specimens as [a basis for naming] afarensis."

Johanson, in a telephone interview with Science News, discounted the chronological and geographic separations. "I don't really understand why she thinks it's inappropriate to mix the sites," he said. "We have pointed out the stability of the species over one-half to three-quarters of a million years as well as over a one thousand mile area. That a single species of man-like creature inhabited both sites simultaneously is demonstrated by the almost perfect meshing of skeletal fossils — particularly jaw fragments — from one site with those of the other, he added.

In fact, Johanson asserts that he and Leakey are actually describing the same creature. "Exactly," he says. "The footprints would have to be from Australopithecus afarensis. They substantiate our idea that bipedalism occurred very early, and our
The hole in the middle of the Milky Way

In the summer of 1978 evidence was reported that indicates the existence of an extremely massive object in the center of the galaxy M87. It is suspected that this may be a gigantic black hole, millions of times as massive as the sun. M87 is a very active galaxy. It is the scene of highly energetic processes that manifest themselves in a copious output of radiation of all kinds. Accepting the proposition that there is a black hole in M87 — and most astronomers are probably reserving judgment at the moment — one must ask whether such massive black holes are characteristic of active galaxies particularly or of all galaxies including quiescent ones like our own.

In a report soon to be published in the Astrophysical Journal, Luis F. Rodriguez and Eric J. Chaisson of the Harvard Smithsonian Center for Astrophysics present evidence that there may be a massive black hole in the center of our galaxy. The evidence on M87 came from studies of the optical brightness of the center and of the collective motion of stars near the center. Rodriguez and Chaisson derive their evidence from a study of the radio brightness and motion of the ionized gas at the center, the radio source Sagittarius A West, done with the Haystack radio telescope in Westford, Mass.

The results indicate that the source has a core-and-halo structure. Studies of the line broadening — that is, of the Doppler shifts in the emission of certain resonant frequencies by the gas that result from motion of the gas — indicate that the gas is going around in orbit. The dynamics of Sagittarius A West, says Rodriguez and Chaisson, can be attributed to Keplerian (that is, quasi-planetary) rotation induced by the gravitational field of the stellar population to be expected at the galactic center plus an extremely compact mass equal to five million times the sun’s mass. Whether this is a black hole remains to be observed.

Fusion: Light-Ion excitation

Implosion fusion is the name given to experiments that aim to produce nuclear fusion by crushing a pellet of the appropriate fuel, deuterium or deuterium and tritium. The implosion is caused by suddenly delivering energy to the surface of the pellet. The energy causes an explosive ablation of the surface layer, and the back reaction from the ablation implodes the core of the pellet.

To deliver the triggering energy physicists first thought of light, concentrated, coherent, powerful beams of laser light. Laser fusion is being pursued rather heavily in the United States and in a number of other countries. Concentrated high-energy beams of other things can also do the job: electrons, light ions, even heavy ions. Electron beams have been experimented with to a somewhat lesser extent than laser beams, but the ions were generally considered a long shot. The difficulty of making beams of ions, accelerating them and delivering them to the target made them seem less attractive.

Now, as a result of experimental developments in the last two years, there is intense interest in the use of ion beams as energy deliverers in implosion fusion. At the recent 1979 Particle Accelerator Conference in San Francisco physicists and accelerator technologists crowded a ballroom of the Palace Hotel to hear Gerald Yonas of the Sandia Corp. in Albuquerque tell the reasons why. They are two: First and foremost, it has proven easier to make and energize beams of light ions than people expected. That is not as trivial as it sounds. In this field, experiment and technology have little detailed theory to go by, and testing reasonable expectations is a laborious process. Second, if the ion beams can be made and brought to the target, they deliver energy much more easily than light or electrons.

And if it weren’t for a rather fortunate circumstance, ion beam production might not be easier. Ion beams are made in dipoles. These are much larger than the dipoles in an old-fashioned radio, and their electrodes are shaped and arranged for this purpose rather than for those of the radio. When you apply an accelerating voltage between the electrodes of the dipole, what you are likely to get, says Yonas, is electrons. They are light and come off the cathode easily. Even if the electric field is made strong enough to pull atomic nuclei, that is, ions, out, there will still be a lot of electrons in the way.

The solution is to apply a pulsed magnetic field across the gap. This makes the electrons go into orbit, and the cathode is effectively surrounded by an ionized gas source with an orbiting cloud of electrons. The combination of forces provided by all this makes it convenient for the ions to come out, in currents up to millions of amperes.

The experimenters at Sandia have been working this out in an apparatus called PROTO II. The great excitement is grounded in their belief that the method will scale up. Since 1977 they have been building an apparatus called EBFA I. The building was completed late last year, and now the equipment to go into it is arriving. In a few years they expect to have 36 separate modules working together to produce 30 terawatts of power.

Once the ion beam arrives at the fusion target, it has advantages over the other...