Unsolved Problems in Geometry

The difficult problems we do
tomorrow; the impossible ones
take a little longer

BY LYNN ARTHUR STEEN

Draw a wiggly curve on a sheet of paper,
without lifting your pencil or allowing the
curve to cross itself, joining the end to the
point of beginning. Now try to find four
points on your curve that form the vertices
of a square.

That problem in plane geometry ap-
pears to be a little bit harder but not radi-
cally different from the well-known “con-
struction” problems of high school geom-
etry courses: “Given a circle in the plane,
construct an inscribed square.” Our prob-
lem just has a few more wiggles in it.

It also happens to be unsolved: No one
has yet been able to prove that every
closed curve contains the vertices of a
square. Geometry, despite its procrustean
image as an ancient, completed subject,
abounds in unsolved problems that are
still under active investigation. Many of
these problems are easy to understand,
and some of them are even being solved.

The most famous of the long-unsolved
problems of geometry is the four color
conjecture that every map can be colored
with no more than four colors in such a
way that adjacent regions are assigned dif-
ferent colors. This conjecture, formulated
in 1852, was first solved in 1976 with an
innovative computer-assisted proof by
Kenneth Appel and Wolfgang Haken of the
University of lllinois (SN: 7/31/76, p. 71).

Recently another major geometric
question dating back to the early nine-
teenth century was resolved, but with a
counterexample rather than a proof. Just
last year Robert Connelly of Cornell Uni-
versity showed that something that had
been believed for more than 150 years was
actually false: that any closed polyhedral
surface in three dimensional space is rigid.
A complete spherical geodesic dome is a
common example of this type of surface.
Although standard geodesic domes are
rigid (because they are convex), Connelly
was able to construct from 18 rigid trian-
gles an enclosed surface that is flexible!
Subsequently, this surface was simplified
(see illustration) to the extent that a card-
board model can easily be constructed.

Connelly’s counterexample to the “ri-
gidity conjecture” is particularly striking
because it was so unexpected. For
centuries engineers have believed that tri-
angular structures are rigid, and no math-
ematician said nay. Yet now any school-
child can build a simple closed triangular
surface that flexes. Of course, these spe-
cial examples do not mean that all polyg-
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To build a flexible enclosed surface from triangular pieces, begin with two flat butterfly-shaped
pieces, each formed from six triangles. (The actual length of the edges is not critical, but the following
choices work well: u = 12, v = 10, w = 5, x = 11,y = 17.) Push the upper flaps of the left
butterfly down, and glue the w-length edges together,; do the same for the lower flaps on the right
butterfly. Then push the lower flaps of the left butterfly and the upper flaps of the right butterfly up,
glueing the corresponding w-length edges together.

Now join the upper v-length edges of the two butterflies to each other, and, similarly, the lower
ones to each other. This produces a contorted figure bounded by four u-length edges. Seal up the
hole bounded by these edges by the folded rhombus with four edges of length u, as suggested in the
diagram. The resultis a (non-convex) enclosed figure formed entirely from triangles that is not rigid.

onal structures flex: The common ones,
including those used in buildings and
bridges, are indeed rigid. But these exam-
ples of flexible polyhedra do show that our
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confidence in the rigidity of structures
must be based on more complex criteria
than the simple beliefs of the past.

It is not uncommon for common sense
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to produce nonsense, especially when it is
torn between the aesthetic demands of
symmetry and the rational demands of
logic. While symmetry and logic usually
work in harmony, they occasionally pro-
duce jarring dissonance. Even the music of
the spheres is sometimes disrupted by
strange chords.

For ideal harmony we need only listen
to points playing on the circumference of a
circle. When arranged in a regular, equally
spaced pattern, points on the circumfer-
ence of a circle form the vertices of a regu-
lar polygon: The chords joining three
equally spaced points produce an equilat-
eral triangle, four produce a square, five a
regular pentagon, and so on. Points in
these regular arrangements lie as far apart
as possible from each other, while each
polygon determined by such an arrange-
ment contains the largest possible area for
any inscribed polygon with the same
number of sides.

Is it always possible to find the vertices of a
square on a closed curve, no matter how wiggly
it is? This problem is one among many from
elementary geometry that so far have defied all
attempts at resolution.

The economy and symmetry of this
structure is extraordinary: Maximum area,
maximum dispersal, and maximum sym-
metry are all achieved by regular spacing
of points on the circle. It is an elegant
reminder of Edna St. Vincent Millay’s re-
frain: “Euclid alone has looked on Beauty
bare.”

In three dimensions, the circle becomes
a sphere, and the regular polygons be-
come regular solids called polyhedra. The
regular polyhedra enjoy a distinctive har-
mony of their own, a happy coincidence of
truth and beauty that has been held in awe
since the time of ancient Greece: There are
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only five regular polyhedra, the so-called
Platonic solids, namely the tetrahedron (4
triangular faces), the cube (6 square
faces), the octahedron (8 triangular faces),
the dodecahedron (12 pentagonal faces)
and the icosahedron (20 triangular faces).

The three-dimensional version of the
maximum area problem is this: How
should n points on the surface of a sphere
be arranged to yield a polyhedron of
maximum volume? We need at least 4
points to get any solid at all, and for 4
points the maximum volume is achieved
by the first Platonic solid — the regular
tetrahedron. Likewise, if n is 6 or 12,
maximum volume is achieved with the
corresponding Platonic solid — the oc-
tahedron (6 vertices, 8 faces) or the icosa-
hedron (12 vertices, 20 faces). But for n =
8, Platonic harmony clashes with the har-
mony of the sphere: The cube, which is the
regular Platonic solid with 8 vertices, is
not the solid of maximum volume deter-
mined by 8 points on the surface of the
sphere! The optimal configuration was
discovered in 1963 only after a massive
computer search. This solid is highly ir-
regular, having sides of three different
lengths, but it has 12 percent more volume
than the cube inscribed in the same
sphere.

It should now come as no shock to dis-
cover that the best patterns for the non-
Platonic numbers (n = 5, 7, 9, etc.) are
equally irregular. Very little is known
about solutions when n reaches 10 or
more. Without symmetry as a reliable
guide, the contemporary mathematician
is almost at the mercy of brute force calcu-
lation — an ineffective and inelegant tool.

The dispersal problem of the sphere is
equally perplexing. For n = 4, 6, and 12 its
solutions are the Platonic solids; for other
values of n it is different, and usually not
the same as the solution to the maximum
volume problem. Again, solutions for most
large values of n are completely unknown.

Unsolved problems of geometry is the
subject of a lengthy article by University of
Washington geometer Victor Klee that ap-
pears in the May 1979 issue of MATHEMAT-
1cs MacGaziNE. Klee reports on the status
of nearly a dozen major problems in plane
geometry that have stood unsolved for
decades. Here are some of them:

® Can a circle be broken into a finite
number of pieces (like a jigsaw puzzle)
that can be reassembled to form a square?

e Can every point on a polygonal bil-
liard table be reached from every other
point by an appropriate (albeit perhaps
lengthy) shot that caroms off the sides?

® What is the minimum number of col-
ors that can be used to color the entire
Euclidean plane so that no two points at
unit distance from each other receive the
same color?

These problems may; like the four color
conjecture, be resolved only by extraordi-
narily complex proofs. Or they may yield
to a very simple attack. Klee reports on
one problem that remained unsolved for

A HARD PROBLEM.. ..

Suppose S is a finite set of points in
the plane, not all collinear. Must there
be some line that contains precisely two
points of S?

...WITH AN EASY SOLUTION

This problem was posed near the end
of the nineteenth century by the
British mathematician James Joseph
Sylvester, and remained unsolved for
more than 40 years: After nearly half a
century it looked as hard as it did when
it was first posed. But then someone
had a clever idea:

Pick a point of S, and draw a line that
misses this point through two other
points of S; measure the distance from
the point you picked to the line you
drew. Since there are only finitely many
points in S, there can be only a finite
number of lines through two paints of S.
Hunt among all these points and lines
to find the pair p, L that produces the
least distance between the point p and
the line L. This line, as we can show, will
then contain only two points of S.

Suppose the line L contained three or
more points of S. Then two of them
must lie on the same side of the foot f of
the perpendicular fromptoL.Ifxandy
are two such points with x closer to f,
the distance from x to the line through
p and y would be less than the distance
from p to the line L:

\
But this cannot be, since the distance
from p to L is the least possible of all
such distances between points and
lines in S. Hence the line L cannot con-
tain three or more points of S: It will,
necessarily, contain precisely two points
of S.

nearly 50 years that now is known to have
a solution easily within the grasp of a high
school geometry student! (This problem,
and its solution, is contained in the ac-
companying box.)

Geometry'’s rich lode of unsolved prob-
lems may well be due to its very long
history. The ratio of unsolved to solved
problems in mathematics, according to
Klee, increases without bound: Each ad-
vance generates more problems than it
solves, thus ensuring a nearly exponential
growth in unsolved problems, even from
“classical” elementary geometry. a
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