

The Ductility Factor

The use of high strength, low alloy steel has been severely limited, due to its low ductility. Now, a simple heat treating and controlled cooling process, developed at the General Motors Research Laboratories, has successfully enhanced formability properties without sacrificing strength.

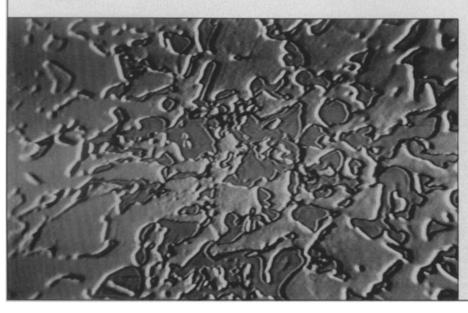
A comparison of the stress-strain behavior of GM 980X, SAE 980X, and SAE 950X steels. GM 980X offers greater ductility at the same strength as SAE 980X, and greater strength at the same ductility as SAE 950X.

Scanning electron microscope micrograph of dual phase steel at a magnification of 2,000. The matrix (background) is ferrite; the second phase is martensite. OR SOME TIME, automotive engineers and designers have been faced with the challenge of building cars light enough to get good gas mileage, but still roomy enough to comfortably transport four or five passengers. One technique which has proved fruitful is materials substitution.

Lighter materials, such as aluminum alloys and plastics and high strength, low alloy steels (HSLA), are being phased into new vehicle designs to replace certain plain carbon steel components. Each, though, has displayed inherent problems which limit its utilization.

Unlike plastics and aluminum, however, HSLA steels have the same density as plain carbon steel. Weight reduction is achieved because thinner sections (less volume) can be used to carry the same load. Since the formability (ductility) of most high strength steels is poor, though,

it has only been possible to form simple shapes from it. This has severely limited the widespread use of HSLA steels (such as SAE 980X) for auto components. New hope for the increased utilization of HSLA steel has arisen, however, with the development of a new dual-phase steel, GM 980X, at the General Motors Research Laboratories.


General Motors is not in the steel business, and GM 980X is not a brand of steel. GM 980X is the designation for a type of steel displaying mechanical properties similar to

those of the samples first formulated at the General Motors Research Laboratories. "GM" in the designation indicates that the steel is a variation of the conventional SAE 980X grade. In the standard SAE system for material identification, "9" designates that the steel is HSLA. "80" is the nominal yield strength of the metal in thousands of pounds per square inch. The "X" denotes a micro-alloyed steel—one containing on the order of 0.1% of other metals such as vanadium, columbium, titanium, or

zirconium as a strengthening agent.

GM 980X displays the same strength, after strain hardening, as SAE 980X steel, but has far more ductility. This characteristic allows it to be formed into various complex shapes which were previously thought to be impossible with HSLA steels. The superior formability of GM 980X has substantially increased the utilization of HSLA steel in the manufacturing of automotive components such as wheel discs and rims, bumper face bars and reinforcements, control arms, and steering coupling reinforcements.

Dr. M.S. Rashid, discoverer of

the technique to make GM 980X steel, comments, "I was working on another project using HSLA steel, when I noticed that if SAE 980X steel is heated above its eutectoid temperature (the temperature at which the crystalline structure of metal is transformed) for a few minutes, and cooled under controlled conditions, the steel developed significantly higher ductility and strain-hardening characteristics, with no reduction in tensile strength."

URTHER experiments proved that the key variables to make GM 980X are steel chemistry, heating time and temperature, and the rate at which the steel is cooled. Specimens of SAE 980X were heated in a neutral salt bath, then cooled to room temperature with cooling rates ranging from 5° to 14°C/sec. (9° to 26°F/sec.). Dr. Rashid notes, "We found that the maximum total elongation resulted when the cooling rate was 9°C/sec. (16°F), and the lowest total elongation resulted from the highest cooling rate (14°C or 26°F/sec.)."

GM 980X steel has a high strain-hardening coefficient or n value, accompanied by a large total elongation. The n value gives a measure of the ability of the metal to distribute strain. The higher the n value, the more uniform the strain distribution and the greater the resistance of the metal to necking (localized hour-glass-shaped thinning that stretched metals display just prior to breaking). Tests have proved that GM 980X distributes strain more uniformly than SAE 980X, has a greater resistance to necking, and

thus has far superior formability.

"The superior formability of GM 980X compared to SAE 980X steel appears to depend on the nature of two microstructural constituents, a ferrite matrix (the principal microstructural component) with a very high strain-hardening coefficient, and a deformable martensite (the other crystalline structure) phase. In the SAE 980X, failure occurs after the ferrite becomes highly strained, but when the GM 980X ferrite is highly strained, strain is apparently transferred to the martensite phase, and it also deforms.

"Therefore, voids leading to failure do not form until after more extensive deformation has occurred and the martensite phase is also highly strained. Obviously, the exact nature of these constituents must be important, and any variations in the nature of these constituents could influence formability. This is the sub-

ject of ongoing research."

Dr. Rashid's discovery represents a significant breakthrough in the area of steel development. His findings have opened the door to a new class of materials and have completely disproved the commonly held belief that high strength steel is not a practical material for extensive automotive application. "At GM, we've done what was previously thought to be impossible," says Dr. Rashid, "and now we're hard at work to find an even stronger and more ductile steel to meet the needs of the future."

THE MAN BEHIND THE WORK

M.S. Rashid is a Senior Research Engineer in the Metallurgy Department at the General Motors Research Labora-

tories. He was born in the city of Vellore in Tamil Nadu (Madras), India, and attended the College of

Engineering at the University of Madras-Guindy. He came to the United States in 1963 and was awarded a Ph.D. in Metallurgical Engineering from the University of Illinois at Urbana-Champaign in 1969.

After a three year Post-Doctoral Fellowship at Iowa State University, he joined the staff of the General Motors Research Laboratories.

Dr. Rashid is continuing his investigations into the development of even more ductile high strength, low alloy steels. When not in the lab, he enjoys relaxing by playing tennis and racquetball with his wife, Kulsum.

