Can You Counton
Your Computer?

By IVARS PETERSON

William M. Kahan is picky. It bothers him
when a calculator shows 10 consecutive 3s
as the answer for 1 divided by 3, and 11
consecutive 3s for 9 divided by 27. The an-
swers should be identical. He worries that
on some computers the order in which
numbers are multiplied sometimes makes
a difference to the answer, when everyone
knows, for example, that 3 x 2 is the same
as 2 x 3. Moreover, Kahan says calculators
and computers occasionally give “com-
pletely erroneous results for innocent-
looking problems, ... and sometimes the
false answers look quite plausible.”

In his office at the University of Califor-
nia at Berkeley, Kahan keeps a drawerful of
calculators. For any visitor, he can select
one of the calculators and nimbly manipu-
late the keys to unveil an error or incon-
sistency in the answer to a particular prob-
lem. Kahan says, “Funny things can hap-
pen on even the best products available.”
This applies to computers, too.

For more than 20 years, Kahan has com-
plained about the quality of the arithmetic
computers perform. The errors most dif-
ficult to identify and eradicate involve
flaws in the design of computer systems
both in the hardware (the electronic cir-
cuits that make up a computer’s brain)
and the software (the programs of instruc-
tions that govern a computer’s manipu-
lations). Last year, a subcommittee of the
Computer Society of the Institute of Elec-
trical and Electronics Engineers proposed
standards for microprocessor arithmetic,
and a new subcommittee is looking at
arithmetic standards for larger com-
puters.

Manufacturers are starting to listen to
the complaints of scientists and mathe-
maticians who value accurate, reliable
computer arithmetic. A few months ago,
David S. Walonick, a computer pro-
grammer and consultant in Minneapolis,
discovered a particularly blatant mistake.
He was astonished to find that, on his new
IBM personal computer, 0.1 divided by 10
equaled 0.001, instead of 0.01. “It’s the type
of thing where you sit and look at the ter-
minal, and your mouth just drops open,”
Walonick says. “I was running test data
through my package, and it was coming up
with wrong answers.”

At first, Walonick had difficulty in per-
suading IBM that the computer was mak-
ing a mistake. “When | called them, | was
told that beginning programmers have

lllustration by Donna Ward

72 SCIENCE NEWS, VOL. 122

ST
Science Service, Inc. is collaborating with JSTOR to digitize, preserve, and extend access to (5,\# 24

Science News. RINOIY
www.jstor.org

By handling numbers in unexpected ways,
computers and calculators create
headaches for computer programmers,
set traps for unsuspecting users and
sometimes produce wrong answers

problems like that,” Walonick says. “They
weren't even willing to try it when I first
called.” However, a story in the New York
Times brought a response, and the com-
pany released a corrected version of the
operating system program to circumvent
this problem.

Many computer mistakes arise out of
decisions computer designers make on
how to handle numbers that can't be rep-
resented exactly on a computer or a cal-
culator. For example, the fraction one-
third (1/3) can’t be represented exactly as
adecimal fraction. No matter how many 3s
are added to the end of 03333 ..., it is
never exactly equal to one-third. Cal-
culators, and large computers, too, work
with numbers having a definite number of
digits, frequently 10 or 12 decimals. There-
fore, many numbers and the results of cal-
culations must be rounded or chopped off,
introducing unavoidable error.

A further complication is that most
computers actually operate in the binary
number system, in which all numbers are
represented by strings of 1s and Os. (For
instance, in the binary system, two be-
comes 10, three is 11, four is 100, five is 101,
and so on.) Certain numbers in the deci-
mal system, like 0.1 and 0.99, are im-
possible to represent exactly as binary
numbers except as infinitely long strings
of binary digits. More errors accumulate
when the computer has to translate its
internal binary numbers into decimal no-
tation for the benefit of users.

In the IBM personal computer, a de-
signer made a mistake in the conversion of
binary to decimal notation in one special
case. Jeanette A. Maher of IBM points out
that the computer calculated accurately in
binary although it erred in what it dis-
played as a decimal. “It was only in very
isolated situations when users were using
the BASIC language interpreter that the
decimal point was misplaced by one posi-
tion,” says Maher, “and only under unusual
and narrow conditions.”

Kahan says that despite its limitations, a
calculator or computer need never deliver
misleading answers. “Calculators can be
designed in such a way that if a user does
encounter strange output he can be sure
that it is not a consequence of anything
capricious that his machine has done to
him but must be attributed to his data, his
problem, or his procedures,” Kahan says.
“Somehow, we have to get mathematical

JULY 31, 1982

microprocessor arithmetic.

ideas into packages that can be used safely
without obliging users to understand all
the details.”

Kahan asks rhetorically, “What would
happen to our society if everybody who
wished to use a telephone, a television set,
a car, a detergent, a plastic toy or a com-
puter were obliged first to learn at least a
little about how it was made and how it
works internally, and then to test it himself
for hazards and other surprises?”

William J. Cody, a mathematician at the
Argonne National Laboratory, says, “Nu-
merical analysts have been trying to tell
computer designers for the last 20 years
how to do the job right, and they've never
got the message.” He says most designers
are electrical engineers who are proud of
the fact they can do something a little bit
faster than their competition, and they
don’t seem to worry about whether it’s
right or not. “I don't think they sometimes
realize the errors they’'ve made until those
things are cast in concrete, and then it’s
too late,” says Cody.

Often, there are several different ways of
calculating mathematical quantities.
Sometimes, designers choose a procedure
or formula (called an algorithm) that
doesn’t work in all cases. One example is
the calculation of the slope of a straight
line that runs through several given
points. Some calculators that allow this
calculation at the touch of a key occasion-
ally fail to give a correct result for reason-
able data. The formula the designers

Intel’s 8087 integrated-circuit chip is the first to implement a proposed standard for

chose allowed rounding errors that af-
fected the answer. Kahan says, “The mis-
take made by the designers of the cal-
culators ... was their assumption that a
standard formula found in many texts was
the way to do the calculation.”

In some ways, large computers are even
more fallible than handheld calculators.
Kahan tells this “horror story” from sev-
eral years ago to illustrate his point.

A graduate student in aeronautical en-
gineering was testing his ideas for enhanc-
ing an aircraft’s lift at low speeds by solv-
ing a complicated system of differential
equations on an IBM 7090 computer. After
running the simulation, the student found
that his modified airplane crashed. At the
time, Kahan was concerned that the IBM
program for calculating logarithms
seemed to be inaccurate in several places.
He wrote a substitute program and tested
it on previously run sets of results.

“There were only two sets of results that
were different,” says Kahan. “One set be-
longed to a psychologist. He didn't care
because he had already published some-
thing.” In the other case, the graduate stu-
dent’s airplane no longer crashed. After
further checking, the student accepted the
new result, was delighted to have a thesis
topic and went on to get his degree.

Later, after the university obtained an
IBM 7094, the plane crashed again when
the calculations were done to high accu-
racy. The student found he had to use an
arithmetical subterfuge to save the air-

73

Intel

William M. Kahan

plane. Whenever the computer had to sub-
tract 1 from a number slightly less than 1,
he programmed it to subtract 0.5 twice in-
stead. Apparently, in the first case, the
computer prematurely discarded the last
digit in order to do the subtraction, while
this was unnecessary in the second case.
The final answers were substantially dif-
ferent. The lack of a guard digit, an extra
digit that is kept to ensure accuracy during
computations but is not displayed, is a
common problem in both calculators and
computers.

After graduation, the student went to
work for an aircraft manufacturer. When
he ran his program on the company’s Un-
ivac 1107 computer, the aircraft crashed
again. This time, the computer had auto-
matically transformed 0.5 subtracted
twice into the number 1, a more efficient
expression (it thought), and the original
guard digit problem reappeared.

Kahan says, “Regard this as being more
nearly typical of what happens in en-
gineering practice; namely, that something
goes wrong, you believe the computer, you
say the device doesn’t work, and you de-
cide you've got to do something else.”

This story also illustrates how different
one computer can be from another. This
presents headaches for computer pro-
grammers who want to write programs
that will run on a variety of machines. A
program written for one company’s com-
puter will not necessarily run on another’s
computer because of seemingly trivial dif-
ferences in how they perform arithmetic,
round off numbers and handle computa-
tions that result in numbers larger or
smaller than the computer can hold. At the
same time, programmers must watch for
each computer’s idiosyncrasies and pro-

74

“A little neglect may breed mischief. ..
for want of a nail the shoe was lost;
for want of a shoe the horse was lost;
and for want of a horse the rider was lost.”
— Benjamin Franklin

gram around them by providing tests and
alternate routes to make sure that the
computer does not stop in its tracks, un-
able to cope with an unexpected division
by zero or some other intractable prob-
lem.

Examples of anomalies abound for
every brand of computer. For example,
some numbers on several large Control
Data Corp. computers test as being differ-
ent from zero, yet if you multiply by them,
the product vanishes. The numbers act as
zeros in multiplication and division. The
Cray 1, one of the world’s fastest com-
puters, has a similar set of numbers. These
work for multiplication and division, but if
you add one of these to itself, the sum is
zero. Cody says, “Admittedly, some of
these numbers are on the very fringes of
arithmetic systems. They're not things
that you would run into in everyday com-
putation, and yet their mere existence
means that you have to write general-pur-
pose software in such a way that it is toler-
ant of such numbers.”

“What makes tests and branches expen-
sive is that programmers must decide in
advance where and what to test,” Kahan
says. “They must anticipate every unde-
sirable condition in order to avoid it, even
if that condition cannot arise on any but a
few of the machines over which the pro-
gram is to be portable.”

“Programmers take pride in coding
around these perversities,” says Kahan.
“Unfortunately, we may not have reckoned
the cost.” In addition to the programmer’s
wasted time, some programs accept an
unexpectedly limited range of data; some
are less accurate and more complicated to
use than they should be; some are less
helpful than users would like when things
go wrong; and some are slow.

In many business and government ap-
plications, computers do not perform
complex computations, but rather proc-
ess data by sorting or classifying informa-
tion, or control operations. Because
arithmetic errors are much less likely to
arise in these applications, designers have
been less concerned about the quality of
arithmetic in computers dedicated to
these duties. Problems arise when such
computers are also used for scientific and
engineering calculations, or for business
purposes, like the calculation of mortgage
interest rates and payments, which re-
quires arithmetically subtle algorithms.
For instance, Kahan suggests that busi-

nessmen should not always trust all the
figures displayed on some financial calcu-
lators. Although discrepancies are likely
to be only a few dollars out of sums of mil-
lions of dollars, the differences may be big
enough to attract a bank examiner’s eye
and waste his time.

Cody says that when IBM brought out its
highly successful 360 line of computers,
the company seemingly ignored the scien-
tific market and concentrated on the
commercial market. Fred N. Ris, manager
of computation-intensive systems at the
IBM Research Center, admits that the early
360 models had major flaws in their arith-
metic, now corrected. One involved the
lack of guard digits for high-precision
computations. “It suffered from things that
we know now ought to be done a little bit
nicer,” Ris says.

Cody is also concerned about the new
computer language Ada being developed
for the Department of Defense. “I think
there are features in the language that, in
my opinion, are somewhat questionable,”
he says. “It really was not intended origi-
nally as a scientific programming lan-
guage, and unfortunately it is being re-
garded in that light right now.” As a result,
many arithmetic operations are not de-
fined or specified properly, and do not
meet an arithmetic standard like the one
recently proposed for microprocessors.

A draft of the proposed standard for “bi-
nary floating-point arithmetic” was pub-
lished in the March 1981 COMPUTER, along
with comments on the standard’s merits.
The term “floating-point” refers to the
format computers and calculators use to
represent numbers internally. In the deci-
mal system, for example, the floating-
point (or scientific notation) form of the
number 0.032 is 3.2 x 102. This particular
standard applies specifically to arithmetic
performed in the binary system, with 32
places or “bits” set aside to represent each
number.

John Palmer, a mathematician at Intel
Corp., indirectly sparked the standard’s
development. He persuaded management
to adopt a company-wide arithmetic
standard for all its lines of microproces-
sors so they would be compatible and at
the same time to develop the best possible
floating-point arithmetic. When competi-
tors heard rumors about the development,
they became a little nervous, and as Kahan
facetiously puts it, said, “Let’s slow them
down by forming a committee.”

SCIENCE NEWS, VOL. 122

B TA [Tal f
;i ol r
=25

= iuit

R

B n:m:i

lin)

=]
SLLLELTL

8
CTTE e el T

W S
A (5) (DI 1= A (11D

Ris says part of the motivation for pro-
ducing a standard is that it allows manu-
facturers to compete strictly on a price-
performance basis without “endless
verbal contests about whose arithmetic is
better.” Products from different manufac-
turers also would be compatible so that
the whole industry would benefit and
grow.

The subcommittee, instead of surveying
what had been done in the past and com-
ing up with something close to past and
present industrial practice, started from
scratch. Ris says, “They got away with it
because of the excessive grubbiness of
many floating-point arithmetics already in
the field, all the way from super-comput-
ers down to pocket calculators.”

The effort and many of the subsequent
recommendations were controversial. Ris
says many people were skeptical and wor-
ried that the committee was going off to
define something nobody wanted to build.
“People were jumping up and down on the
table and saying one couldn’t possibly im-
plement various functions at a reasonable
cost,” he says. Intel cut the debate short
when its 8087 microprocessor arithmetic
chip appeared showing that the principles
in the proposed standard could be built
into an integrated-circuit chip reasonably
and efficiently. “I don't think it [the stand-
ard] would have happened without that,”
says Ris.

Although the standard is still a proposal
and a final draft has yet to appear, a variety
of microprocessor manufacturers and
software developers have adopted it. Now
a new working group, headed by Cody, is
beginning to develop a more general
arithmetic standard that accommodates a
wider variety of computer formats and
bases. Getting such a standard accepted
once it's developed, however, may be
much more difficult.

Daniel W. Lozier, a mathematician at the
National Bureau of Standards, says, “Man-
ufacturers [of computers] have a strong
vested interest in doing things the way
they have developed internally.” Hardware
designers may have valid reasons for their
choices, or the company may wish to
maintain compatibility with previous
product lines. Performance may be af-
fected, and extensive software libraries
would have to be rewritten.

Even the proposed binary floating-point
arithmetic standard will not guarantee
correct results from all numerical pro-

JULY 31, 1982

0 TR T
gﬁ isis |
FO
e el o i ﬁ
an i = g
=5 uli i ﬁm:
i1 o) S) 01
e T o
[SR
[1 0 R N =1 Vo W !

grams. “But the standard weights the odds
more in our favor,” says Kahan. “It does so
by meticulous attention to details that
hardly ever matter to most people but
matter, when they do matter, very much.”

Errors, although rare, will still appear,
Ris says, “We know it happens all the time,
and we know that a certain amount of it is
inevitable. The question is what can we do
to provide environments in which we re-
duce the inevitable to its irreducible min-
imum, and at the same time try to provide
mechanisms for warning users they may
be treading on thin ice and ought to inves-
tigate the results they got a little bit more
closely.”

Kahan goes further. “The real horror of
this situation is that the incidence of error
in one’s final conclusion is unknowable;”
he says. “We do not know how often nu-
merical results are considerably more
wrong than is believed by the people who
use them.”

Lozier says computer users tend to look
for grosser errors than those likely to be
caused by faulty arithinetic. “But in any
kind of careful application of the com-
puter, there are independent checks,” he
says. “In other words, they look for inde-
pendent confirmation that what they're
computing is reasonable.”

Kahan says, “Those funny things com-
puters do can cause confusion. Some of
the confusion can be alleviated by educa-
tion, whereby we come to accept and cope
with these anomalies that are inescapable
consequences of the finiteness of our ma-
chines. But education cannot mitigate the
demoralizing effects of anomalies when
they are unnecessary or inexplicable,
when they vary capriciously from ma-
chine to machine, when they occur with-
out leaving any warning indication, or
when no practical way exists to avert
them.”

Today’s calculators, compared with
those of five years ago, make far fewer mis-
takes. New microprocessors built to the
standard will have more reliable arithme-
tic than earlier models. Errors by com-
puters occur only occasionally, under
special circumstances, but exactly when
and where they appear adds a tiny, mad-
dening uncertainty to any computation.
The benefit of careful attention to detail in
the new standards that are developing,
says Kahan, is “that consequences follow
from what we have done rather than from
what has been done to us.” O

s
10

=
=

=

T
JINILY p)
3]

Calculators can do funny things

You can check your own calculator
or personal computer to see what
kinds of anthmetic anomalies arise.
Some calculators are better than
others; older calculators, even in
the same product line, tend to
make more mistakes.

Try this. Start with 1, divide by 3
and then multiply your answer by
3. Subtract 1. What answer do you
get? On a TI-565 (made by Texas
Instruments), for example, the
answer is zero. On a TI-25, it's
—1x10~8 Repeat the process, but
this time in the last step, instead of
subtracting 1, subtract 0.5 twice.
On a TI-25, the new answer is
—1x10~2 while the TI-565 gets —1x10~™

Although the differences in the
answers appear trivial, the difficulty
is that if a programmable calcuilator
or computer performs arithmetic in
the same way (and many do), then
it may come across division by
zero depending on how the
machine has rounded off earlier
results. The problem is the lack of
a proper guard digit.

Is 23 exactly equal to 8?
Calculate 23 then subtract8. On a
TI-65, the answer is 2x107° On
your calculator, does mxe give the
same result as exar? |s 1 divided by
3 the same as 9 divided by 277?

If your calculator has
trigonometric functions like sin,
cos and tan, check to see whether
trigonometric identities
(mathematical relationships among
the functions) are preserved. For
example, tan 20° = tan 200° =
tan(2x10M° (for any power of ten).
Compare your answer for tan 20°
to, say, tan(2x10%)°. Does your
calculator give the correct values
forsinm =0, cosm = 1and tanm =
0, although the calculator cannot
represent the number 7 exactly?

In more complicated
calculations, other peculiar
behaviors can show up. Although
today’s calculators are very good
and in most applications will give
accurate, reliable results, users
must be wary of exceeding the
sometimes arbitrary limits of any
machine. |. Peterson

75

