Superweapon Software Woes

Weeding out errors in Defense Department computer programs that

operate everything from missiles to tanks is a frustrating business

By IVARS PETERSON

There were only two little mistakes in
the computer program that guided a new
missile through its firing test last Decem-
ber. But the mistakes were serious enough
to cause the computer-controlled missile
to drift from its plotted trajectory, and a
human controller had to save the missile
from crashing. The result was an expen-
sive delay in a major Department of De-
fense program.

Donald R. Greenlee, a specialist in the
Defense Test and Evaluation office, uses
the incident to illustrate that “in the digital
world, it only takes one bit to bring on
catastrophe.” One of the errors was simply
areversal in sign, a negative where a posi-
tive should have been.

To Greenlee, the incident is also a suc-
cess story. “The test was conducted, and it
did what was intended —to reveal a prob-
lem,” Greenlee says. Laboratory simula-
tions allowed design engineers to dupli-
cate the failure noted in the flight test. This
narrowed down the search, and a line-by-
line check of the relevant parts of the
computer program eventually isolated the
mistakes. The computer program was
fixed, and subsequent firing tests were
successful.

Software errors, mistakes in computer
programs, occur frequently. According to
Edward Miller of Software Research Asso-
ciates in San Francisco, during software
development every 1,000 lines of com-
puter program typically contains 10 to 80
“defects,” all of which must be caught
somehow. Some programs are millions of
lines long.

This problem is a special concern at the
Defense Department because almost
every system in the current and planned
military inventory relies on computers
and microprocessors extensively. For
example, computers control the targeting
and flight of missiles, coordinate and con-
trol sophisticated systems installed in
high-performance aircraft, and integrate
the complex activities of battlefield com-
mand. “Consequently, software has be-
come the dominant factor in military
systems,” says Edith W. Martin, deputy
undersecretary of defense for advanced
technology. One reason for DOD’s increas-
ing reliance on software is that software
changes are easier and less costly to make
than altering the comparable function
built into electronic circuits, she says.
New threats can be met by making appro-
priate changes in computer programs.

Software must be reliable, particularly

312

in life-threatening
situations, and that
means weeding out
any errors. However,
testing and evaluating
computer programs
efficiently and effec-
tively is very difficult.
Many senior program
managers at DOD feel
much more comfort-
able with hardware,
such as jet engines or
artillery shells, than
with computer soft-
ware. “We know very
well how to test an ar-
tillery shell. We've
been doing it for
centuries,” says
Greenlee. “We know
how to condition the
thing environmentally — heat it up and
freeze it, drop it, and then test fire it. But
computer software? You can'’t even see it,
let alone beat it with a hammer or attempt
to destroy it. It requires a different intel-
lectual approach.”

DOD’s concerns were reflected in a
recent software test and evaluation con-
ference held in Washington, D.C. Spon-
sored by the National Security Industrial
Association, a collection of defense-
related companies, the meeting brought
together representatives of government,
industry and universities to review and
discuss experiences and advances in lo-
cating software errors. Rear Admiral
Isham Linder, Defense Test and Evaluation
director, in his keynote address pin-
pointed two key questions: “How much
testing is enough, and how should it be
conducted?”

The most obvious method for testing a
computer program is to track exhaustively
every possible logical branch in the pro-
gram or to try every possible calculation,
but in large programs this method is im-
practical. Even a simple program with just
10 two-choice branches provides more
than 1,000 different paths. Anything more
complicated could require months of
computer time and might generate
thousands of pages of output. Who's going
to read all the results? Who knows the re-
sults are correct? In general, an exhaustive
test that covers all the possibilities is im-
possible.

One way to get around this difficulty is
to sample randomly a small portion of the
possible paths in a computer program. If

j
Science Service, Inc. is collaborating with JSTOR to digitize, preserve, and extend access to Q%%
Science News. BIKOJS ®

| | -

U.S. Air Force

enough tests are performed, and all errors
found are corrected, then the probability
of any remaining errors should be very
low. Some software developers even de-
liberately seed their large programs with a
known number of errors. If an independent
testing group finds all the deliberately in-
troduced errors and others besides, then
the probability is high that practically all
the errors in the program have been found.

“That’s a far cry from dropping an artil-
lery shell off the back of a truck,” says
Greenlee.

Another approach is to construct test
cases that pinpoint specific types of errors
known to occur during the course of
software development. However, develop-
ing a comprehensive set of suitable test
cases can take as much effort as writing
the computer program itself. More
theoretical methods, like mathematical
“proofs of correctness,” have turned out to
be too complicated to apply in real situa-
tions or restricted to a few special cases.

Part of the problem is that computers
are usually brought in when the mental
task is too hard for the human user to do in
sufficient time. “Therefore, you're trying
to test something which, by definition, is
mentally challenging,” says Greenlee. “You
don’t sit down and check out a compli-
cated piece of software on the back of an
envelope.”

“Testing is hard work,” Miller told the
conference participants, and no one dis-
agreed. Victor R. Basili of the University of
Maryland concluded his presentation, “It
is almost frightening how many open

SCIENCE NEWS, VOL. 123

vvvaAjstor.oFg

questions there are in a field where we
have been working so long.”

Within DOD, software development
“ranges from a reasonably effective, disci-
plined approach in a few systems to near
chaos in others,” says Martin. A U.S. Navy
study, for example, reveals 13 different
mathematical systems in use for steering
an airplane from one place to another. In
the U.S. Air Force, as much as 90 percent of
computer program lines are coded in a
primitive, difficult-to-decipher computer
language. In many situations, pro-
grammers find it easier to start over rather
than try to modify existing software. The
U.S. Army, in a 1978 survey of about 100
battlefield systems, found 34 different ver-
sions of essentially the same computer,
each operated by a different computer
language. This diversity creates headaches
for those responsible for testing and up-
grading the systems, and produces prob-
lems on the battlefield when one com-
puter has to communicate with another.

Any standardization program to im-
prove “interoperability” and make testing
easier faces immense obstacles. For in-
stance, Captain David Boslaugh of the
Naval Material Command pointed out that
the Navy has about 450 different systems
and subsystems with “embedded com-
puters.” The number of computers in use
is doubling every two years. About 50 mil-
lion unique lines of software, in a variety of
computer languages, are currently operat-
ing active systems. To redo these lines
would take years, considerable expertise
and at least $85 billion, said Boslaugh.

Nevertheless, because of DOD’s growing
reliance on computers, efforts to ra-
tionalize the software development proc-
ess are continuing. Many in DOD, espe-
cially in the Army, are counting on a new,
committee-built computer language, Ada,
which is the result of a seven-year DOD-
sponsored design effort. Ada promises to
help computer programmers work more
quickly, with fewer errors, and to allow the
development of portable computer pro-
grams capable of running on almost any
computer instead of just a few models.

The Pentagon has mandated that
software for most military systems be
written in Ada, and the language will prob-
ably be in routine use by 1985. However,
Ada’s prospects for becoming a standard
language outside of DOD and military ap-
plications are limited because of doubts
about its ability to handle complicated
scientific calculations (SN: 7/31/82, p. 72).
Some critics also see Ada as a big, complex
language that eats up costly computer
memory space. The language offers so
many options that, despite the emphasis
on programming in “packages” and the
use of English-like sentences for computer
instructions, Ada would be difficult to
learn, they contend.

The Ada approach is part of an effort to
bring more discipline to software devel-
opment. At one time, computer pro-
grammers were akin to magicians, clev-

MAY 14, 1983

erly stringing together chains of logical
statements, using whatever tricks they
could invent, that somehow got a com-
puter to do what it was supposed to do.
Such undisciplined efforts, imbued with
programmers’ idiosyncracies, proved dif-
ficult to test and modify when they sprang
unexpected errors.

Many conference participants argued
that programs had to be written with test-
ing in mind, and that this approach had to
be emphasized in the training of pro-
grammers. Basili said that a recent exper-
iment he conducted at the University of
Maryland showed that students altered
their programming styles when they knew
their programs were to be tested by an in-
dependent reviewer. Several students
were apologetic because they had avoided
trying anything “funny” and instead con-
centrated on meeting the specifications
and making their programs as clear as
possible to the reviewer. To Basili, this
shift in attitude was encouraging.

Carolyn Gannon of General Research
Corp. in Santa Barbara, Calif., argued that
one way of helping both programmers and
testers was to compile and study the kinds
of errors made during software develop-
ment. This record would indicate where to
look for mistakes, which tests to use to
find them and how to handle them. When
enough data are collected, these error
analyses could be used for developing new
tests and for estimating the probability of
hidden errors still left in complicated
computer programs. Although such data
would be valuable, one problem is that
programmers are reluctant to admit they
make mistakes, and companies don’t want
the public to know how many errors are
made, even if the errors are corrected,
Gannon said.

Testing and evaluation already take up
as much as half of the budget for software
development, so contractors are naturally
reluctant to spend extra money on compil-
ing error histories. At DOD, when program
budget cuts are necessary, the test pro-
gram itself (as the “bringer of bad news”)
often is an early victim. The frequent re-
sult, however, is the discovery of surprise
problems late in a program or perhaps
even on the battlefield. Greenlee says,
“The earlier the developer finds deficien-
cies, the quicker, easier and cheaper it will
be to fix them.”

Last year at an Electronics Industries
Association meeting, Brig. Gen. Robert D.
Morgan described “Airland Battle 2000,”
the Army’s evolving doctrine for fighting
on future battlefields. “The new doctrine
requires continuous action by many ele-
ments,” he said. “There is no forward edge
of the battle area or line of scrimmage.
Many battles are conducted over wide
areas by units which appear to act inde-
pendently but, in fact, know their role and
strive for a common goal.” Computers and
satellite communication systems tie to-
gether the array of electronics systems
that will have to operate in a “chemical,

nuclear and electronic warfare environ-
ment.” In such complicated “systems of
systems,” finding software errors early be-
comes even more important.

Col. Edward Akerlund of the Air Force
Systems Command said these coming
complex networks introduce whole new
areas of problems. Programmers are just
beginning to learn how to put together
these large systems, and the development
of testing procedures lags far behind. He
said that tests are needed, for example, to
ensure that when part of a system fails, the
rest of the system does not go down.

Concerns like this led DOD to initiate
the Software Test and Evaluation Project,
an effort to develop guidelines for the test
and evaluation of defense systems soft-
ware and to identify useful testing tools
that showed promise and were worthy of
further research. One of the key issues
raised during the early stages of the proj-
ect involved the amount of testing re-
quired. Because it is difficult (expensive
and time-consuming, too) to find every
error that may exist in a computer pro-
gram, one need is for a formal risk assess-
ment procedure that balances the risks of
not doing a test against the number and
nature of errors likely to still reside in the
program. One preliminary recommenda-
tion was that testing should be done in
proportion to the risks involved if a failure
were to occur. Linder noted that a quanti-
tative measure of this risk would be very
helpful for high-level decision makers who
have to decide whether a certain project
should proceed.

This spring, DOD plans to launch
another program, a $250 million, 10-year
“software initiative.” One aim of the STARS
(software technology for adaptable, reli-
able systems) program is to create a
software engineering institute where DOD,
in cooperation with industry and univer-
sities, can evaluate and demonstrate the
usefulness of new programming tech-
niques and integrate these ideas into mili-
tary systems more quickly. The institute
would also train DOD personnel. As sev-
eral conference participants pointed out,
plenty of programming and testing tools
exist, but the information is hidden in
obscure journals, locked in company test-
ing centers or scattered in bits and pieces
and applicable only to particular com-
puters and computer languages. Some col-
lecting and sifting of this material would
be valuable, they agreed.

Spending time and effort on learning
how to catch mistakes reflects a recogni-
tion that no human-designed system is
perfect. Software errors are as likely to
come up in a business program that gen-
erates invoices as in a program that is
supposed to coordinate five space shuttle
computers. However, software errors in
DOD computer systems, whether in
missiles, satellites or at command head-
quarters, can have drastic consequences.
Even one little mistake could be one too
many. 0O

313

