Pathwaysto Chaos

The mathematics of ‘chaos’ may aid in understanding epileptic seizures,
computer failures and other sudden transitions to disorder

By IVARS PETERSON

ith very little, if any, warning,

the human brain can fail. Dur-

ing such failures, a victim may

spend seconds staring blankly
into space or, in extreme cases, may lose
consciousness and fall stiffly to the ground
while his whole body jerks. These sei-
zures, termed epilepsies, are symptoms of
uncontrolled overactivity among the
brain’s nerve cells. In some way, an electri-
cal disturbance originating in a few
neurons temporarily takes over the brain,
and no other messages get through.

Neural systems fail frequently although
they usually fail “soft.” Typically, this type
of failure affects only a particular, local
segment of the brain’s elaborate process-
ing network, resulting in something as
simple as a misread word. Nevertheless,
“hard” failures like epileptic seizures are
not uncommon. According to the Epilepsy
Foundation of America, about 1 percent of
the population suffers from some form of
epilepsy.

Now mathematical techniques are de-
veloping that may provide some insight
into the causes of epilepsies. Curiously,
the same mathematical methods can also
apply to complex computer systems and
imply that computers can suffer “convul-
sions” too.

Paul E. Rapp of the Medical College of
Pennsylvania in Philadelphia observes
that computer-based electronic control
systems are becoming “more biological.”
Increasingly complex computer networks,
with numerous interconnections and a
wide range of independent but coordi-
nated functions, are evolving. Rapp says,
“It is therefore possible to ask if future
generations of control networks will be
vulnerable to forms of failure previously
observed only in biological systems.”

Rapp presented his ideas at the Second
International Workshop on Molecular
Electronic Devices held earlier this year at
the Naval Research Laboratory in Wash-
ington, D.C. (SN: 6/11/83, p. 378). Rapp is
one of only a few medical researchers who
study the application of sophisticated
mathematical techniques to biological
systems.

Rapp’s concern is that complex elec-
tronic networks may “display a failure
mode analogous to a convulsion.” He says,
“Available evidence is indirect and incon-
clusive. However, the consequences of a
convulsive failure in a military control
system could be grave. For this reason, the
possibility, even if seemingly remote, mer-
its examination.” Already there is evi-
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dence that computer systems have suf-
fered mysterious breakdowns during mili-
tary exercises and even in aircraft control
systems.

The still-tenuous thread that ties to-
gether computer networks and physiolog-
ical systems is an emerging field of math-
ematics called topological dynamics that
describes the way in which systems
change with time. This mathematical ap-
proach suggests that systems governed by
physical laws can undergo transitions to a
highly irregular form of behavior called
“chaos.” Although chaotic behavior ap-
pears random, it is governed by strict
mathematical conditions. The theory pre-
dicts that just as a small group of neurons
may suddenly generate a disruptive elec-
trical signal, so too can electronic compo-
nents within a computer.

Rapp says, “They are both dynamical
systems, they are both subject to in-
stabilities, and they are both subject to
analysis using the technique of topologi-
cal dynamics.”

uch analyses may potentially pro-
vide insights into the origin of
nervous system failures, especially
epilepsies, and suggest possible
control methods or “cures.” They may also
provide a better understanding of what
properties predispose an electronic con-
trol system to a major convulsive failure.

David Ruelle of the Institut des Hautes
Etudes Scientifiques in France suggests
that systems showing “chaotic” behavior
are frequently encountered in physics,
chemistry and biology. One example is
smoke rising in still air from a cigarette.
“Oscillations appear at a certain height in
the smoke column, and they are so com-
plicated as to apparently defy understand-
ing,” he says. “Although the time evolution
obeys strictly deterministic laws, the sys-

These huge ocean eddies may be
examples of “chaotic” water flows.
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tem seems to behave according to its own
free will.”
nderstanding chaotic behavior in-
volves closely examining the solu-
tions of differential equations that
describe and model the phenom-
ena that scientists encounter in nature.
They select certain parameters as vari-
ables and, to keep things simple, ignore
others. In mathematical models of neural
systems, for example, the variables can
represent the electrical potential across
cell membranes, membrane currents and
the concentrations of several chemicals
present. Some parameters, such as tem-
perature or a particular drug concentra-
tion, assume a constant value for a given
case but may vary from case to case.

A differential equation links the rate of
change over time of one of the variables
with the variable’s current size and the
current size of other variables. Descrip-
tions of complicated systems may require
a large set of such equations. In one sense,
Rapp notes, a set of differential equations
is like a machine that takes in a set of
values for all the variables and then gener-
ates the new values at some later time. Of-
ten, the relationship expressed in the
equations is nonlinear; that is, input and
output are not proportional.

What some mathematicians have
learned is that, under the right conditions,
even simple sets of nonlinear differential
equations can yield numbers that appear
to follow no pattern. Although the
equations express direct cause and effect
relationships, the numerical results pre-
dict that modeled systems can show ir-
regular motion or randomlike, chaotic be-
havior. In fact, this class of solutions dis-
plays a sensitive dependence on initial
conditions. A slightly different starting
point produces a radically different resulit.

This can have startling consequences. If
weather systems can be described by
mathematical equations that shift into
chaotic behavior, then a change as slight
as a butterfly flapping its wings near a
weather station makes long-term weather
predictions impossible. Ruelle comments
that this work “gives some theoretical ex-
cuse to the well-known unreliability of
weather forecasts.”

Rapp says, “The movement of informa-
tion can also be described by differential
equations.” Thus, information flow within
anetwork may potentially become chaotic
under the right conditions. Rapp cites a
1979 military exercise that simulated the
communications traffic that would result
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This graph represents a three-
dimensional “phase portrait” of a
chaotic state for an oscillating
chemical reaction, in which the
concentrations of components
can fluctuate wildly over time.
Analysis of the geometrical form
of this plot reveals whether the
system is behaving randomly (is
“noisy”) or is still governed by de-
terministic equations. In the latter
case, the graph'’s trajectories de-
fine a “strange attractor,” and the
system’s behavior is termed
“chaotic” in a mathematical sense.

from a conventional war. The exercise
quickly lost coherence, and later, officials
reported that at times during the exercise
they wondered whether they were playing
the same game. Other reports of possible
“computer convulsions” have surfaced
more recently, including an accidental,
computer-activated missile firing from an
airplane.

Because nonlinear differential equa-
tions approximately model natural phe-
nomena, scientists are taking a closer look
at observations of irregular behavior that
previously may have been ignored (the
kind of results that often ended up in waste
baskets). Harry L. Swinney of the Univer-
sity of Texas at Austin, who has demon-
strated the transition of oscillating chemi-
cal reactions (SN: 9/19/83, p. 188) from
smooth, well-ordered behavior into chaos,
says, “Everybody’s done experiments and
gotten noisy data.” The kind of noise that
he demonstrated, however, is “intrinsic to
the reaction. It depends on the dynamics
of the system,” he adds. “Our feeling is that
there are many situations in nature and in
industry where you have systems that, no
matter how well you control them, exhibit
nonperiodic [chaotic] behavior.”

The work of people like Swinney and
Ruelle has inspired a small group of medi-
cal researchers, including Rapp, to apply
similar mathematical techniques to the
analysis of biological behavior. One phys-
iologist predicts, “Chaotic dynamics will
be the appropriate language to describe
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what is happening in many pathological
circumstances, just as the calculus is an
appropriate language to describe what
happens when an apple falls from a tree.”
ne important insight, Rapp
comments, is that systems may
behave “normally” for a wide
range of initial conditions and
then suddenly shift into a chaotic mode
when a parameter, such as the concentra-
tion of an administered drug in the case of
a neural system, moves through a critical
value. Thus a tiny change in a parameter
can result in dramatically altered behav-
ior. This abrupt change in behavior char-
acteristics, obtained reproducibly in re-
sponse to a small change in the value of a
system parameter, is called a bifurcation.
The question is whether an epileptic
episode is an example of “the conse-
quences of a bifurcation to chaotic behav-
ior,” says Rapp. Indirect theoretical and
experimental evidence suggests that tran-
sitions from normal behavior to convul-
sions are probably the result of bifurca-
tions and that neurons and neural net-
works are capable of shifting into chaotic
behavior, he says. However, the question
cannot be answered yet with certainty.
Rapp says, “This has some very exciting
implications from the point of view of
treatment because it suggests that [a
more] rational design of chemical therapy
of convulsive disorders could be possi-
ble.” Areliable mathematical model would
allow a physician to identify which drugs

“reset parameters” so that a convulsion
stops. “One can view this form of clinical
intervention as essentially an exercise in
parameter resetting,” says Rapp.
hese mathematical methods “are
now available for the first time to
permit the rigorous analysis of dra-
matic irregular behavior,” says
Rapp. “You no longer have to look at highly
disordered behavior and simply regard it
as inevitable, as an act of fate or something
you can do nothing about. It can be ana-
lyzed.”

Physiologist Leon Glass of McGill Uni-
versity in Montreal has applied the notions
of topological dynamics to heart cells and
the processes that lead to irregular
heartbeats. He has observed the onset of
chaotic dynamics in chicken heart cells as
the result of electrical stimulation at par-
ticular frequencies and amplitudes.

Glass suggests that these mathematical
ideas may apply to a variety of diseases
(which he calls “dynamical diseases”) and
other physiological problems. He notes,
for example, that when mechanical ven-
tilators are used to help patients breathe,
depending on the machine’s frequency
and amplitude, situations often arise when
a patient “fights the ventilator” and re-
ceives insufficient air. Glass says that
practitioners are rarely sensitive to the
fact that proper breathing will occur at
some frequencies and amplitudes but not
at others.

“What may be happening is that this re-
flects some kind of irregular, perhaps cha-
otic, dynamics that arises just because of
the nature of the frequency,” says Glass.
“Maybe it’s a little bit analogous to the ir-
regular dynamics of the fibrillating [un-
coordinated twitching] heart.”

However, Glass warns that because so
many biological behaviors are irregular,
“there’s a tendency for people to say ev-
erything is chaotic,” in the mathematical
sense of the word. Careful experiments are
necessary to show that the behavior re-
sults from bifurcations because of
changes in parameters, he says.

Rapp argues that chaotic behavior is not
limited to biological systems. “In particu-
lar, it is observed in the kinds of physical
devices and networks that are used to
construct the hardware of electronic and
optical systems,” he says. These include
laser discharges and the sudden appear-
ance of background noise in electronic
devices like some semiconductor oscil-
lators.

Rapp concludes, “At present, dynamical
theorists are confronted by a terra incog-
nita. Present ignorance makes it impossi-
ble to confidently identify which systems
are, or are not, robust against parameter-
dependent failures.” In the case of com-
puter systems, he suggests that these fail-
ures may become increasingly probable
as electronic hardware becomes more so-
phisticated. In many situations, a com-
puter that fails as often as the human brain
could produce disastrous results. O
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