John Pack

§8§ 9

. EREEEEE

By IVARS PETERSON

y personal computer is blinking
at me — again. The video
screen’s winking cursor, stead-
ily flashing on and off, is almost
hypnotic. For several hours, it has pa-
tiently pointed out error after error in the
computer program that I am trying to
write. This time, the problem is in line
3890. A colon sits where a semicolon
ought to go.

Not all my mistakes are this easy to find
or correct. Some are the consequences of
hitherto hidden quirks built into the par-
ticular computer language, BASIC, that I
am using. These quirks often catch me by
surprise, and programming around them
takes a little bit of ingenuity and a lot of
time.

I also know that even when the com-
puter’s error-sniffing nose finally locates
all of my “syntax errors,” and the com-
puter program actually runs, the program
may still do something that I did not an-
ticipate. Somewhere in the excruciatingly
detailed path | had to set for the com-
puter’s digital manipulations may lie unin-
tended branches or loops that take the
program far afield.

The frustrations of writing a computer
program are familiar to both novices like
me and experts like John Backus of the
IBM Research Laboratory in San Jose,
Calif. He says, “I've sat in front of my own

202

Two contrasting approaches to computer language development
may someday help beginners avoid some of the frustrations of

programming a computer

personal computer and cursed the de-
signers of BASIC.. .just as you have.”

Backus was part of the IBM team that in
the 1950s developed FORTRAN, the first
widely used programming language. It al-
lowed programmers to escape the tedious
task of writing out instructions as strings
of 1s and 0s. Almost all current computer
languages, including BASIC, are descend-
ants of this first effort.

The list of programming languages
available grows year by year, much to the
consternation of computer users who are
faced with difficult choices over which
language is best for their purpose. Some
languages have been invented for special
applications, and others for general use.
LISP, for example, is widely used by re-
searchers in artificial intelligence —in a
sense, for trying to teach a computer how
to “think.” LOGO was specially designed to
bring computer programming to children.
Pascal has become the standard language
for many university researchers, while
Ada is a complex, committee-built lan-
guage for Department of Defense use.

“Ada is the most complicated language
we've got now,” Backus says. “It will do a
lot of things for you, if you are diligent
enough to learn all thousand pages of the
manual and can find the features that you
want to use.”

ackus isn’'t happy with the re-
strictions that most of these lan-
guages impose. “Conventional
languages create unnecessary
confusion in the way we think about pro-
grams,” he says. In attempting to correct
the faults of FORTRAN and its descen-
dants, Backus is one of several computer
scientists who are determined to add yet
another computer language to the list.
Several years ago, Backus outlined the
motivation for his present search for a
more efficient programming language.
“The complacent acceptance most of us
give to these enormous, weak languages
has puzzled and disturbed me for a long
time,” he said. “l have tried to analyze
some of the basic defects of conventional
languages and show that those defects
cannot be resolved unless we discover a
new kind of language framework.”
Backus's approach to creating a new
programming language is very mathemat-
ical. His “functional” language is almost
like algebra — very logical and carefully

Science Service, Inc. is collaborating with JSTOR to digitize, preserve, and extend access to
Science News. RINOJY

constructed according to well defined
rules. In this language, new procedures
can be built from ones already defined.
Most of all, this new style of computer lan-
guage does not require the programmer to
spell out in stupefying detail every in-
struction in a program.

Elliot Soloway of Yale University in New
Haven, Conn., is also looking for a better
computer language, but he spends his
time studying how beginners actually
write programs. He and his group in Yale’s
computer science department are looking
particularly at the kinds of mistakes
novice programmers make while learning
how to program in the language Pascal.
From these observations, they hope to
come up with a new computer language
that better fits the “natural” problem-
solving plans that people apparently bring
to computer programming.

Soloway says, “Bugs [errors in com-
puter programs] illuminate what a novice
is actually thinking — providing us a win-
dow on the difficulties as they are experi-
enced by the novice.” He continues, “I
[would like to] design language constructs
that mirror the way they want to think
about a problem.”

Soloway’s scheme for a new program-
ming language will be based on what he
learns about the mental models people
bring to programming. He disagrees
strongly with Backus’s approach. “If you
make programming like algebra, then
people will learn as much about pro-
gramming as they learn about algebra,”
Soloway says. “Not a hell of a lot.”

n contrast, Backus contends, “Pro-

gramming languages essentially

prescribe a way to think about de-

scribing a process. We find that
mathematics and orderly thinking of that
sort is much more helpful than human fac-
tors.”

Although Backus and Soloway disagree
fundamentally on how to go about design-
ing a new programming language, they are
both trying, in their ways, to make pro-
gramming easier and more accessible.
Soloway says, “While we do not believe
that everyone need become a professional
programmer, it is increasingly important
to be able to describe to the computer how
it is supposed to realize one’s intentions.”

Soloway argues, “For such casual pro-
grammers, initial difficulties in learning a

SCIENCE NEWS, VOL. 124

o

o

A

®

www.jstor.org

programming language may become a
permanent barrier to their continuing in-
teraction with computers.”

Backus sees his programming language
as a way of simplifying and speeding up
the process of writing a computer pro-
gram. “Writing a program is a hideously
complex process now,” he says, “and we're
trying to make it a lot simpler.” That means
creating a language that is much more or-
derly and mathematically straightforward,
he argues.

“Our hope is that the actual user can
write his own programs by taking rela-
tively sophisticated programs that have
been written for him and then combining
them in such a way that the result does
what he wants,” Backus says. In most cur-
rently used languages, one program
usually cannot be arbitrarily tacked onto
another program to create a new one. For
example, it is generally difficult to stick a
computer program that plots graphs into
another program, written independently,
that does something else.

Backus explains that with a functional
language, a user could, for instance,
choose three programs that already exist
and select two different mathematical op-
erations to combine them. The result
would be a new program that in a con-
ventional language would have had to be

written as one unit.
D you can run functional pro-
grams on personal com-
puters,” says Backus. “We will try to make
it widely available so that a lot of people
can test the hypothesis that it will really
simplify programming.” A version of the
language optimized for the IBM personal
computer may be ready within a few years.
Computer languages like LISP already
contain some features of a functional
programming language.

Soloway'’s language is at least five to 10
years away. Meanwhile, his research is
providing insights into how people pro-
gram. By studying student programming
errors, Soloway has identified about a
dozen types of errors that come up over
and over again very predictably. Soloway
suggests that these errors result because
the concepts that novice programmers
bring to their task conflict with the way
that the computer language requires them
to write a program.

For example, something as simple as
finding the average of a set of numbers
presents difficulties. A program’s calcula-
tion of an average is usually performed in a
loop that reads in a number, adds it to the
running total, then reads in another num-
ber, and so on, until the process is com-
pleted. A second program statement con-
tains a counter to keep track of how many
numbers are added.

Soloway says that novices rarely have
trouble with the counter because it corre-
sponds to the way people count a se-

ur goal is to produce a func-
tional language ... so that

SEPTEMBER 24, 1983

quence of numbers, that is, one by one.
However, people normally find a total by
writing down all the numbers, then adding
them up. “The way the programming lan-
guage requires you to do a total is different
from the model students have,” Soloway
says. “Thus, they make bugs.” His research
has identified at least a dozen such trouble
spots, he says.

The conclusions that Soloway draws are
controversial. Some critics reject the idea
that the mind has “natural” or preferred
problem-solving strategies. Soloway ad-
mits that no one really knows the origin of

‘the “natural” schemes that he hypothe-

sizes people bring to programming. These
patterns may be “hard-wired” into the
brain, or they may be the result of early
learning during childhood.

Mathematician Robert B. Davis of the
University of Illinois at Urbana-
Champaign has applied research tech-
niques very similar to those used by Solo-
way. Davis is studying problem-solving by
looking at the errors students make while
doing arithmetic problems. His results ap-
pear to reinforce Soloway’'s work. Davis
says, “Certainly, our evidence seems to
show that there are lines of reasoning that
people are very comfortable with.”

Although in the long term, Soloway's
group is working on the design of a new
language, in the short term the research-
ers are developing a computer tutor to
help novices overcome some of the obsta-
cles they face when writing programs for
the first time.

The latest version of their tutor, named
Proust, is designed around the idea of “the
remembrance of bugs past.” It works by
trying to reconstruct how a student cre-
ated a particular mistake-ridden program
from what it “remembers” of its own errors
in generating an identical program. Be-
cause Proust “knows” the right way to do
the program and compares this to what it
thinks the student did to write the incor-
rect program, it can make suggestions.In a
sense, Proust behaves like a classroom
teacher. By going through this process,
Proust theoretically can pick out nonsyn-
tactic errors that occur when computer
programs run but still do the wrong thing.

Soloway says, “We assume that the trace
Proust generates in recreating this ‘buggy’
program is the one in the student’s head,
and then we can tutor with respect to
that.” He cautions, “That is what Proust is
trying to do. Whether we’ll be successful
in general is another matter.”

Soloway accepts the fact that languages
like Pascal will be around for a long time to
come. Good tutors, whether human or
computer, that understand how pro-
gramming problems arise are needed to
help novices get started.

Like Backus, Soloway believes that
“we’re stuck with lots of conventional lan-
guages” because “that’s the way it has al-
ways been done.” Soloway also contends,
“We have made a commitment to a certain
style of programming for which there is no

empirical basis whatsoever.”

However, Soloway and Backus disagree
on what an alternative language should be
like. For beginners, Soloway says, seeing
the step-by-step execution of a program as
opposed to being able to perform an oper-
ation in one go is more important. A func-
tional language would hide the steps mak-
ing it more difficult for users to under-
stand what is going on.

Backus, on the other hand, says that
“word-at-a-time” thinking is merely the
result of an “intellectual bottleneck” im-
posed by the limitations of early computer
designs. It prevents us from thinking in
terms of larger conceptual units for the
task at hand.

Backus says, “While it is perhaps natural
and inevitable that languages like FOR-
TRAN and its successors should have de-
veloped ... as they did, the fact that such
languages have dominated our thinking
for 20 years is unfortunate. It is unfortu-
nate because their long-standing familiar-
ity will make it hard for us to understand
and adopt new programming styles, which
one day will offer far greater intellectual
and computational power.”

Seymour Papert, creator of LOGO,
echoes a similar sentiment in his book
Mindstorms. He notes as an analogy, that
the original typewriter keyboard (the
QWERTY arrangement of characters) was
the result of an early technical problem.
Because adjacent keys often jammed, fre-
quently used letters were deliberately
separated. More efficient keyboards with
different letter arrangements are available
now, but very few people use them.

apert writes, “There is a tendency
for the first usable, but still primi-
tive, product of a new technology
to digitselfin....I think we are well
on the road to doing exactly the same
thing with the computer.” This applies not
only to how the computer is used but also
to programming languages. Papert goes
one step further: “A programming lan-
guage is like a natural, human language in
that it favors certain metaphors, images
and ways of thinking. The language used
strongly colors the computer culture.”

Davis says, “That raises one of my con-
cerns about the current rush to put com-
puters into the classroom and into the
home. A lot of habits are being created
now that are not necessarily good for the
long term.”

In the meantime, until something better
does come along, novices like this writer
have to struggle with languages such as
BASIC. My present struggle is practically
over, | hope. The program that I started to
write hours ago is running, generating one
graph after another. But the results don't
look right. Is it because of a diabolically
hidden error that I haven't found yet or
some feature of BASIC that I've uncon-
sciously tapped, or is it because I've stum-
bled upon some new mathematical result?
Help! O

203

