ANTS IN LABYRINTHS

and Other Fractal Excursions

Researchers are using an increasingly rich palette of fractal shapes to describe clouds, fractured metal

When the delicate fragrance of a per-
fume weaves its way through the air, indi-
vidual perfume molecules, jostled about
haphazardly in the hurly-burly of molecu-
lar collisions, follow a jagged path. Air cur-
rents further tangle these tortuous paths
into “monstrous” trails that until a few
years ago could only be vaguely described
as “complicated.” The same lack of a com-
pact, precise, mathematical way to de-
scribe irregular forms also applied to the
crinkly roughness of fractured metal sur-
faces, the shapes of mountains and clouds,
and many other naturally occurring pat-
terns. But a new geometry has made these
fragmented forms describable and at the
same time has encouraged scientists to
look at old, seemingly inexplicable ex-
perimental results in a new way.

About a decade ago, Benoit B. Mandel-
brot, working at the IBM Thomas J. Watson
Research Center in Yorktown Heights, N.Y.,
invented the geometrical concept of a
“fractal” to describe nature’s irregularities
(SN:8/20/77,p. 122).Fractals represent ob-
jects or patterns that appear “self-similar”:
No matter what scale is used, the pattern
looks the same. The new detail that ap-
pears in a magnified portion of a fractal
shape looks just like the original pattern.
And no matter how grainy, tangled or
wrinkled they are, the irregularities are
still subject to strict rules.

The scaling property of fractals is sum-
marized by a number called the “fractal
dimension,” which introduces geometri-
cal dimensions that are not whole num-
bers. While a straight line has one dimen-
sion, a wriggly fractal curve can have a di-
mension anywhere between one and two,
depending on how much space the curve
fills in following its meandering course.
Similarly, a hilly fractal scene can lie
somewhere between the second and third
dimensions of classical geometry. A land-

surfaces and processes like diffusion

By IVARS PETERSON

scape with a fractal dimension close to
two may show a huge hill with tiny project-
ing bumps while one with a fractal dimen-
sion close to three would feature a rough
surface with many medium-sized hills and
few large ones. Theoretically, fractal di-
mensions can also go above three.

Mandelbrot says, “The importance of
fractals lies in their ability to capture the
essential features of very complicated and
irregular objects and processes, in a way
that is susceptible to mathematical
analysis.”

One recent application of these ideas is
to the irregular surface of a fractured piece
of metal. Mandelbrot worked with some
metallurgists to come up with a method
that would specify the roughness of a
given surface. “We found that a large
variety of surfaces, although not all, have a
roughness that is very systematic,” he
says. It can be represented by the fractal
dimension. In a paper that will soon ap-
pear in NATURE, the researchers note that
the measured fractal dimension took on
the same value for different specimens of
identically treated samples of the same
metal. They found that different heat
treatments not only affected the tough-
ness of a metal but also changed its fractal
dimension. They conclude that this fractal
dimension may itself be a useful measure
of a metal’s toughness or strength, provid-
ing metallurgists with a new tool for
characterizing metals.

Fractals have also had a great impact on
computer graphics (SN: 11/20/82, p. 328).
One of Mandelbrot’s pastimes is to create
fractal objects that look like natural pat-
terns. Using a random model for generat-
ing fractals, he found that it was possible
to draw pictures of mountains that looked
remarkably realistic. Most recently, he and
Richard F. Voss of IBM successfully simu-
lated the appearance of clouds. Such pic-

tures, generated by computers following
carefully defined mathematical routines,
“always look right,” says Mandelbrot. But
the underlying reason why these random
fractals work is still a puzzle.

Attempts to generate realistic, random
models of trees, however, have not been
successful so far. Mandelbrot says, “Trees
are one of our biggest failures.” As trees
grow, twigs and branches tend to avoid
one another and to die off when severely
overshadowed. “It's a randomness com-
bined with self-interaction to a strong de-
gree,” says Mandelbrot. “When we have to
take account of things that interfere with
each other, it becomes complicated.”

Fractals are rapidly becoming an impor-
tant scientific tool. The first paper in
PHYSCIAL REVIEW LETTERS using the word
“fractal” appeared in 1980. Now, fractal ar-
ticles show up in almost every issue, Man-
delbrot says, illustrating the explosive
growth of the field.

Late last year, Mandelbrot and Michael
F. Shlesinger of the Office of Naval Re-
search in Arlington, Va., organized “Frac-
tals in the Physical Sciences,” the first
such North American conference, held at
the National Bureau of Standards in Gaith-
ersburg, Md. The meeting brought to-
gether a diverse group of scientists work-
ing on applying fractal ideas to a wide
range of physical processes. Shlesinger
says, “We thought that if we all got to-
gether it would help us standardize nota-
tion, meet each other and facilitate further
contacts between us.”

Shlesinger says that fractal ideas are al-
lowing physicists to reexamine problems
that they once ignored. In experiments,
scientists usually look for relationships
between variables; for example, how the
intensity of sound waves scattered from a
metal surface depends on the waves’ fre-
quency. A theory may predict that doubl-
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pattern (left) appears to reflect the characteristics of clusters of dendritic tin crystals (right).
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These cauliflower-
like jumbles are really
clusters of elec-
trodeposited gold
with the “self-similar”
appearance that
identifies a fractal
pattern.
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ing the frequency will quadruple the in-
tensity. Thus, the intensity should be pro-
portional to the frequency squared. How-
ever, in many experiments, the exponents
that express the proportionality turn out
to be numbers like 2.79 instead of integers
like two.

We were brought up to think of integers
as the natural way of representing physi-
cal processes, says Shlesinger. “What we
see now is that that's not true. The nonin-
teger exponents are the physical ones.”
Physicists now realize that all these things
that they've been putting on the back
burner because they didn't understand
them are what'’s natural, says Shlesinger.
“There is something geometric hidden in
these exponents. They are the dimensions
of fractal geometric objects.”

Shlesinger adds. “Some problems be-
come very, very simple if you look at them
in the right way. Now that fractals have
come along, some things that were very
difficult become easy. It gives you a lan-
guage in which to describe and measure
the amount of structure, rather than just
saying the paths are stringy or the surfaces
have holes in them. It gives you numbers
that you can play with, and maybe you can
find relationships between them.”

With this new realization, physicists and
many other researchers are using fractal
patterns to model physical processes like
the sudden, temperature-dependent onset
of superconductivity in thin films of lead,
the adsorption of gaseous krypton atoms
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The array of triangles
represents vaporiza-
tion pits on the sur-
face of an arsenic
crystal. This pattern,
too, seems to have a
y)' fractal structure.

on graphite surfaces or the agglomeration
of small particles of gold to form larger
clusters.

One approach is to measure experimen-
tally some property in a physical system
that scales according to a fractal dimen-
sion. This property can be something like
the current in a metallic film or the pattern
of frequencies found in light emitted by
molecules. Because the physical process
itself is often too complicated for
straightforward mathematical analysis,
the researcher then looks for a more regu-
lar fractal pattern with the same fractal
dimension but on which mathematical
calculations are easier to perform.
Shlesinger says, “It's a sample environ-
ment in which to test the effects of dimen-
sion or how tortuous paths are.” The same
fractal pattern may be a crude but useful
model for many different physical proc-
esses that happen to have the same fractal
dimension.

“Percolation clusters” are particularly
useful for this kind of modeling. Such a
cluster has properties similar to those of a
floor covered with a random mixture of
copper and vinyl tiles. Current will flow
from one side of the floor to the other if
there is a continuous copper path, no mat-
ter how roundabout. If most of the tiles are
vinyl, current isn't likely to go through.
Adding more randomly placed copper
tiles increases the likelihood of linking
patches of copper tiles to form a continu-
ous path. A percolating cluster represents

the point at which a conducting path is
first created. This construct seems to work
as a mathematical metaphor for many dif-
ferent diffusion processes like the ability
of oil to seep through porous rock and the
spread of plant species in a forest. It also
works for abrupt changes in phase like the
lining up of atomic spins to create a mag-
net or the onset of superconductivity in a
thin metallic film.

“The problem is that it's hard to under-
stand calculations done on the actual,
random percolation cluster,” says Man-
delbrot. “They take time, and the calcula-
tions are only approximate because it's a
complicated problem.” Researchers inter-
ested in the problem set about looking for
fractal patterns that were systematic
enough to ease mathematical calculations
but random enough to be realistic. At the
fractal meeting, Mandelbrot proudly un-
veiled his latest creation: a mazelike pat-
tern of connected rings within rings within
rings, and so on (shown on the front
cover). “The randomness makes it realis-
tic, and its systematic character makes it
workable,” he says.

Another intriguing and ultimately scien-
tifically rewarding pursuit is to look at
“fractals upon fractals.” Diffusion, as
exemplified by the peregrinations of the
perfume molecules mentioned earlier, is a
fractal process. When diffusion occurs
along a fractal surface, then the process is
something like letting an ant wander in a
labyrinth and seeing where it goes. An ant
constrained to wander along a straight
line always eventually returns to its start-
ing point. On a two-dimensional plane sur-
face, the ant gets lost. But on fractal paths
with dimensions between one and two,
what happens to the ant is unclear. De-
pending on the nature of its fractal
labyrinth, the ant may keep running into
dead ends forever or perhaps return only
infrequently to its starting point. This
curious analogy, too, is a useful image for
many physical processes, says Mandel-
brot.

One of the more startling results of cur-
rent research on fractal-modeled physical
processes is that all kinds of very different
problems give rise to numbers, fractal di-
mensions, that are very close to each
other. These phenomena range from the
distribution of galaxies in the universe to
the nature of turbulence in flowing fluids.
Mandelbrot says that it is too early yet to
tell whether these phenomena are a col-
lection of separate problems with a differ-
ent explanation for each case or whether
there is some underlying principle that
will explain many of them simultaneously.

Meanwhile, as the use of fractals as a de-
scriptive tool diffuses into more and more
scientific fields, from cosmology to ecol-
ogy, explanations for why fractals work
will begin to emerge. “From the beginning,
description went faster then explanation,”
says Mandelbrot. “At present, it’s a theory
that works without being fully ex-
plained.”
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