Mathematical

By IVARS PETERSON

There’s magic in the way Persi Diaconis
shuffles playing cards. Smoothly, skillfully,
he divides a deck of cards into two halves,
then riffles the stacks, rapidly running the
cards past his thumbs so that the two
stacks interleave. He is one of perhaps two
dozen people who can do a perfect shuffle,
not only once but eight times, which
brings a 52-card deck back into its original
order. But Diaconis has taken card shuf-
fling beyond mechanical skill and magi-
cians’ tricks. As a mathematician at Stan-
ford University in California, he has pres-
tidigitated a lifelong fascination with
magic and a strong interest in the mathe-
matics of gambling into a rich source of
mathematical ideas.

“It's harder to do carefully than you
think,” says Diaconis, referring not only to
card shuffling but also to its underlying
mathematics. It raises age-old questions
about the nature of randomness and the
precise mathematical ways used to de-
scribe seemingly unpredictable events.

“Really understanding how to generate
randomness is the business of the statisti-
cian,” says Diaconis. “There are lots of ac-
tivities in life in which you are using a little
bit of randomness, and you want to know
how it spreads.” It comes up in lotteries
and public-opinion polls, in mathematical
simulations of chemical reactions and the
generation of fractal patterns (SN: 1/21/84,
p. 42). The spread of randomness through
a repeatedly shuffled deck of cards is a
worthy image for the study of all these ac-
tivities, he feels.

Diaconis begins with a simple question:
How many times must you riffle shuffle a
deck of cards to ensure that the cards are
randomly arranged? The answer isn't ob-
vious, and for years magicians have taken
advantage of this fact.

An old card trick, which depends on the
two participants being in different lo-
cations, illustrates the situation. To an un-
suspecting victim, the perpetrator sends a
new ordered deck of playing cards and a
set of precise instructions. The instruc-
tions tell the victim to cut the deck and
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shuffle the cards three times, using a riffle
shuffle, which by nature is inexact, each
time. Then the victim takes the top card,
notes its identity, returns the card to
somewhere in the middle of the stack, and
sends back the deck. Without any diffi-
culty, the trickster finds what was once the
top card — usually to his victim's as-
tonishment.

“It seems like an amazing trick,” says
Diaconis, but it depends on the fact that
three riffle shuffles are too few to mix a
previously ordered deck of cards into an
arrangement that no longer shows any
patterns. Cutting and shuffling an ordered
deck of cards once leaves the deck with
two interleaved chains, each chain having
cards in the same relative order as they
started. Three shulffles produce eight such
chains. In this particular trick, all one
needs to do to find the designated card is
to deal out the cards as in a game of sol-
itaire, putting them in chains as they come
up. Eight piles will form, with one leftover
card that doesn't fit any of the sequences.
Presto!
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“So, you can see that three shuffles are
not enough to randomize a deck of cards,”
Diaconis says. It takes at least seven ordi-
nary riffle shuffles before any trace of a
pattern disappears. The special case of a
perfect shuffle, on the other hand, care-
fully maintains the order of the cards dur-
ing shuffling so that eight shuffles bring a
deck back into its original order. “Actually,
no finite number of shuffles will ever make
anything exactly random,” Diaconis adds,
“but you soon get close enough for all
practical purposes.”

The mathematical proof that seven
shuffles is enough to randomize a deck ad-
equately is surprisingly recent. Using ear-
lier mathematical ideas, including a way of
representing the shuffling process math-
ematically, Diaconis came up with the an-
swer and a technique that can be applied
to many other situations in which re-
arranging something into a random order
is important. For example, it's possible to
calculate how many twists of Rubik’s cube
are needed to mix up the cube’s colored
squares completely.

The mathematical representation for
card shuffling that Diaconis used doesn'’t
duplicate exactly how an expert card han-
dler shuffles a deck. But in Las Vegas,
Diaconis found support for his theoretical
result. By law, dealers are required to per-
form five riffle shuffles and two other types
of shuffles before a deck is ready for play. It
would take an awful lot of work to take ad-
vantage of any patterns left after that
shuffling process, says Diaconis.

In trying to solve shuffling problems,
Diaconis has pioneered the application to
statistics of a branch of mathematics
called group theory. Originally invented
more than 100 years ago to solve problems
in number theory and with no practical
applications in mind, group theory now
provides insights into such diverse pur-
suits as crystallography, particle physics
and, because of the work of Diaconis,
statistics.

“The nice thing in working on this stuff
is that the new tools you develop turn out
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to be useful for lots of other things,”
Diaconis says. At first glance, making
sense of ranked data seems unrelated to
shuffling cards. Suppose 500 people taste
five different types of cookies and rank
them from one to five according to how
much they like each one. A statistician
ends up having to search for trends and
patterns in a confusing collection of 500
rankings.

Diaconis says, “Each ranking is, infact,a
rearrangement of five things, which is like
a possible shuffle of a deck of five cards.”
Just as five different cards can take on 120
different arrangements, rankings of five
items can appear in 120 different orders.
The Diaconis technique involves assign-
ing a number to each of the 120 possible
rankings, then listing the number of peo-
ple who choose each ranking. For exam-
ple, 26 people may have put cookies A, B,
C,D and E in the order 4,1, 3,5 and 2, and
so on. Group theory provides a way of ex-
pressing all this information as the sum of
numerical terms, just as the color in a
beam of light can be resolved into a weigh-
ted sum of the basic colors in the spec-

The remarkable thing, Diaconis says, is
that the numerical terms seem to corre-
spond to intuitive explanations that make
sense. The first term gives an idea of the
overall popularity of individual items,
while the second term may suggest a “pair
effect.” That is, after adjusting for the pop-
ularity of a single type of cookie, the two
chocolate chip cookies do better than the
two oatmeal cookies. “Before, people
didn’t know how to adjust for the popu-
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The mathematics of card shuffling
deals out new methods for handling
statistical data and sorting files

larity of individual cookies,” Diaconis
says. “The group theorists actually figured
out a way to disentangle the effect of a
single cookie from the effect of pairs and
the effect of triples and so forth.”

With this new technique, statisticians
can make sense out of all kinds of complex
ranked data. Diaconis says, “It gives you
ways of thinking about the data that seem
useful in applied situations.” In an election
in which voters must rank the candidates
in order of preference, the technique not
only provides popularity ratings but may
also separate out information about the ef-
fect of political party or ethnic back-
ground on the voting.

However, the mathematical results tell
you only that certain ranked items —
whether cookies or candidates —seem to
clump together. A statistician must ask,
“Can you see a way in which these particu-
lar ‘clumped’ items are similar?” Diaconis
says, “The business of statistics is making
relevant comparisons. This method points
you toward possible significant factors,
and your interpretation ‘in English’ has to
fit the individual problem.”

“There are other ways of looking at
ranked data, but this gives you a way to do
what people always wanted to do with
these data but didn't know how to do,”
Diaconis notes. Already, food scientists
are among those showing interest in this
new method of statistical analysis.

Librarians are becoming interested in a
slightly different outgrowth of the mathe-
matics of card shuffling. In this case, it's a
mathematical model for how quickly an
ordered set of books gradually becomes
disordered as people remove books from a
shelf and then replace them in the wrong
spot. “How long do you have to wait until it
becomes chaotic?” Diaconis asks. “Is it a
week, a month, a year?” The combination
of group theory and statistics can answer

these questions, says Diaconis.

The answers matter to library science
specialists who have developed ways of
sorting books that depend on how mixed
up the books are. A stack of books left for
only a week may not have a random order
unless mixing was very rapid. “It might
be,” Diaconis says, “that the sorting al-
gorithm that was designed for use on the
random permutation wouldn'’t take advan-
tage of the patterns that remain because
things were only mixed a little.” Diaconis’
results also have potential applications in
many other fields where sorting and mix-
ing are important.

Diaconis likes working on practical
problems because they force him to learn
new things in order to solve a particular
problem. “I can't just sit down and learn
stuff. I try, and it goes in one ear, and I
forget it,” he says. “But if | need to learn it
to do something, [ can learn anything and
really learn to use it well.”

It was the intractability of a particular
shuffling problem that originally forced
Diaconis to learn group theory. “The best
probabilists on the West Coast had
thought quite hard and deeply about that
problem and couldn’t do it,” Diaconis says.
“I then saw there was a hope of doing it
with group theory, which isn’'t a standard
tool in my subject.” He spent several
months immersing himself in group
theory. “I was rewarded,” he says, “which
doesn’t always happen.” Looking back,
Diaconis is delighted that he had found
another use for something that was origi-
nally invented because it was mathemat-
ically beautiful. O
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