Even simple mathematical
expressions can behave

in unexpected
ways and
display patterns
of startling

beauty

By IVARS PETERSON

ESCAPE INTO CHAOS

D ot by dot, the black screen fills with
color: an iridescent dragon clawing
at its own tail, a swirling, rainbow-hued
galaxy scattering vivid sparks, geometric
fountains spilling colored streams into
still, black basins. Each picture represents
a frame in a mathematical experiment.

To mathematician Robert L. Devaney of
Boston University, the colors and patterns
have special meanings. He is one of many
mathematicians now using computers to
explore the behavior of mathematical ex-
pressions. “I see a whole new branch of
mathematics developing called ‘experi-
mental mathematics,’” says Devaney.
“Most other sciences — physics, chemis-
try, biology — have very definite, well-
entrenched experimental sides as well as
theoretical sides. Now the computer is be-
coming the mathematician’s laboratory.”

Computer pictures “open whole new
worlds to the theoretical side,” says De-
vaney. Pure mathematics asks: Is it true or
isn’t it? Experimental mathematics sug-
gests possible truths that can then be ex-
plored more rigorously and formally.

Devaney’s explorations involve the
simplest “transcendental” mathematical
expressions: the exponential, sine and
cosine functions. The exponential func-
tion, represented by e to some power x, is
familiar to anyone dealing with com-
pounded growth, whether in populations
or in accumulated interest in a savings ac-
count at a bank. The sine and cosine func-
tions (usually written as sin and cos) are
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often associated with angles and come up
in numerous trigonometric applications
such as navigation or surveying.

Interest in these simple functions arises
partly because of the strange behavior of
nonlinear differential equations that are
used to describe or model fluid flow, the
formation of weather systems and other
natural events. For the past decade or so,
many investigators have discovered that
under the right conditions, these
equations themselves seem to generate
“chaotic” numerical results. At the same
time, researchers have also realized that
even the simplest natural phenomena at
times appear to show chaotic behavior
(SN:7/30/83, p. 76).

“Inevitably, you want to study specific
equations that arise, but very often these
are just too complicated to understand,”
says Devaney. “So you are led inexorably
to simpler and simpler systems. If you
can’t understand the exponential, sine and
cosine maps [or functions], then you don’t
have any chance of understanding some-
thing more complicated.”

In addition, Devaney notes, “Since the
simplest possible models give chaotic be-
havior, one must assume that for complex
models there would be even more compli-
cated behavior, so that any physical sys-
tem should exhibit some degree of unpre-
dictability despite the fact that it's deter-
ministic.”

In his studies of the “dynamical” behav-
ior of simple mathematical expressions,

Devaney chooses to deal with “complex”
numbers rather than ordinary “real” num-
bers. When complex numbers were in-
vented centuries ago, no one could think
of any practical uses for them. Now, they
regularly show up in methods for solving
differential equations and in other appli-
cations of calculus. They also play an im-
portant role in describing physical
phenomena like electromagnetism and
the properties of electrical circuits. As a
result, it becomes important to know how
the exponential, sine and cosine functions
behave for complex numbers.

A complex number, z, is made up of a
“real” part and an “imaginary” part. It may
be written as x + iy, where the symbol “i”
represents the square root of —1. These
numbers can be plotted on a graph to pro-
duce what is called the complex plane. For
example, the complex number 2 +3i would
be plotted at a point that is 2 units to the
right of the vertical (imaginary) or y axis
and 3 units up from the horizontal (real) or
x axis. Thus, every complex number is lo-
cated according to its coordinates some-
where in the complex plane.

The process of iteration, performing the
same operation over and over again on
successive answers, is the key to De-
vaney's colorful, computer-generated
graphic designs. He selects a particular
complex number z and calculates, for
example, sin z. Then he calculates the sine
of this answer and repeats the process for
each new answer.
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Depending on the value of z chosen, the
same answer may come up every time (a
fixed point), or the answers stay close to
the original value or even return to the
original value after a certain number of it-
erations (a periodic point). On the other
hand, the answers may get steadily larger.
In the latter case, Devaney assigns a spe-
cific color to the original point in the com-
plex plane.

“We color a point in the plane if an iter-
ate of that point ever has an imaginary
part larger than 50 or smaller than —50,”
says Devaney. “So the colors tell me how
‘quickly’ a point goes to ‘infinity.’” In his
computer pictures, red represents points
that explode beyond the limit in only one
or two steps. The colors orange, yellow,
green, blue and violet represent succes-
sively slower rates. Black areas encom-
pass points that, upon iteration, map into
values that do not escape.

The black areas, called basins of attrac-
tion, are stable regions. Devaney explains,
“All points that are colored black, under
iteration, tend toward fixed points or
periodic points called attractors.” The
colored areas represent unstable, chaotic
regions. For these values of z, the chosen
function seems to behave randomly. “I'm
interested in understanding the differ-
ences between stable regions (the black
regions) and the colored regions,” says
Devaney.

The colored regions for a given complex
function also give the “barest outline” of
something called the Julia set (named
after French mathematician Gaston Julia).
This mathematical set contains all “repel-
ling, periodic points” that seem to drive
neighboring points farther and farther
away. The collection of these special
points corresponds to a “strange repeller.”
The complex plane thus divides into two
intricately shaped regions: basins of at-
traction centered on “attractors” and Julia
sets corresponding to “strange repellers.”

The Julia sets that Devaney finds are
also fractals (SN: 1/21/84, p. 42). Examine
any of the patterns closely and one finds
that their features tend to replicate them-
selves on smaller and smaller scales. A fist
bursts into fingers that each burst into
smaller fingers and so on.

Small changes in a function can radi-
cally change the form of the graphs. If the
exponential function is multiplied by a
constant factor, 1/e, and then iterated, the
resulting picture shows a small, sedate
fountain within a large black basin. Make
the constant slightly larger, and the pic-
ture changes dramatically. “The Julia set
explodes from a relatively small piece of
the plane into two spiralling galaxies,”
says Devaney. Similarly dramatic changes
occur when sin z is multiplied by various
values of a constant ranging from 1+.05{
to 1+.8i. As the imaginary part of the-con-
stant grows, the basin of attraction disap-
pears.

“There are many complex analytic func-
tions out there, all of which seem to have
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their own characteristic behavior,” says
Devaney. It would be useful to study a
whole class of these different functions to
get some idea of this behavior and then to
extend the studies to higher dimensions,
he says.

Ironically, the mathematics is proving to
be so interesting that many of the mathe-
maticians now working in the field are
being led away from the physical applica-
tions that originally motivated the studies
and away from trying to understand the
roots of chaotic behavior in nature. “The
process that made us study simple func-
tions in the first place probably won't be
reversed,” says Devaney. “We're discover-
ing so many new and interesting phenom-
ena.” These discoveries may eventually
lead to entirely different, as yet unknown
applications from those originally en-
visioned.

“It's really the computer that generates
the mathematical problem,” says Devaney.
“You see something on paper, you try to
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explain it mathematically, but you can’t. So
you do more computer graphics, and it
goes on like that.”

But is experimental mathematics a legit-
imate part of mathematics? Heinz-Otto
Peitgen and his colleagues at the Univer-
sity of Bremen in West Germany, in de-
scribing their own computer graphics ap-
proach to exploring iterated functions and
their Julia sets, write in THE MATHEMAT-
ICAL INTELLIGENCER (Vol. 6, No. 2, 1984),
“Experimental mathematics will likely
never be accepted as ‘real’ mathematics
by most mathematicians. But for many en-
thusiasts it has become more than an en-
gaging hobby — it is rather a passion.
While such experiments will continue to
enhance our mathematical intuition in the
future, they might also develop into a
sophisticated art form.”

Computer experiments are bringing ex-
citement and a new visual beauty to math-
ematics. Philip J. Davis and Reuben Hersch
in their book The Mathematical Experi-
ence (Birkhauser Boston,
1981) highlight this appeal.
They write: “Blindness to
the aesthetic element in
mathematics is widespread
and can account for a feel-
ing that mathematics is dry
as dust, as exciting as a
telephone book.... Contra-
riwise, appreciation of the
element makes the subject
live in a wonderful manner
and burn as no other crea-
tion of the human mind
seems to do.” a

The top picture shows the iterated func-
tion sin z(c = 1). The left, right and bottom
pictures show the pattern changing as ¢
grows from 1 +.05i to 1 +.8i. The colors
indicate how long it takes for iterates to
“go far away”: red = very quickly, then
yellow, green, blue and purple = very
slowly.



