THE FIFTH GENERATION

Kyoko Okamoto

SECOND OF THREE ARTICLES

Logic is the art of making truth prevail.
—La Bruyere, Characters 1688

he human mind learns or calculates
largely through inference —the rea-

soning that underlies logical deduc-
tion. Does that make reasoning through in-
ference the best way to program a ma-
chine to learn or calculate? The Japanese
think so, which is why the soul of their
“fifth-generation” computer system (SN:
5/26/84, p. 330), is expected to be based
upon the nonconventional and still largely
experimental class of computer dialects
known as logic-programming languages.
The Japanese are attempting to engineer a
new genre of computers whose basic unit
of operation is the inference—hence their
name, “inference engines.”

It is because these machines are to
possess such a high level of intelligence —
technically, artificial intelligence —that a
conscious decision has been made to pro-
gram their electronic brains with logic
languages. No mere number crunchers,
the goal is to have these devices deduce
split-second conclusions from incomplete
data, sort of a speeded-up version of the
educated guess.

Though researchers developing artifi-
cial-intelligence systems have made sub-
stantial progress toward demonstrating
deductive reasoning in a machine, none
has approached the Japanese goal of one
billion logic-inferences per second (lips)
— the famous gigalips. “Your better im-
plementations [representations of a pro-
gram language on a specific computer] are
approaching 100,000 logic inferences a
second,” notes Ross Overbeek of Argonne
National Laboratory outside Chicago,
whereas “the Japanese are talking about
execution rates on the order of 10 million
to a billion.” How to get from here to there
“is a problem that fascinates me person-
ally,” Overbeek says. And that’s evidenced
in the building of software (computer pro-
grams) for constructing inference engines
he and E.L. Lusk have undertaken and
written about (Automated Reasoning,
Prentice-Hall Inc., 1984).

346

SWIFT

LOGIC

By JANET RALOFF

Unlike most of his U.S. colleagues simi-
larly involved with artificial-intelligence
engineering, Overbeek has abandoned use
of LISP, a functional-programming lan-
guage, for PROLOG, the predominant
logic-programming language. “See, | tend
to agree with the Japanese,” he says, “that
expert systems will be the main applica-
tion — certainly a central application—of
computers in the 1990s, and that logic pro-
gramming is probably the right vehicle for
implementing expert systems.”

These expert systems are computer
programs that contain both the knowledge
and ability to make deductions in a nar-
row, specialized field, such as heart dis-
ease diagnosis. “And the appeal of logic
programming for this application,” ex-
plains Gary Lindstrom at the Mas-
sachusetts Institute of Technology in
Cambridge, “is that the program represen-
tation is in a rule format.”

A typical rule might be: /If a person
smokes, then that person has an elevated
risk of developing heart disease. “This
format is nice because you can collect
bodies of knowledge in a fragmentary and
accumulating kind of way,” Lindstrom
says. “You don’t have to write the whole
program from top to bottom before you
can try it out.”

What's more, he says, “LISP is written in
an algorithmic fashion in that one writes
pieces of the program — called functions
—which do specific tasks when explicitly
invoked in a planned sequence.” By con-
trast, the rules of logic programming “are
invoked in unforeseen sequences by the
deduction that’s done in a particular prob-
lem,” Lindstrom says.

“Logic programming, fundamentally, is
a way of doing an orderly search in at-
tempting to solve a problem,” he points
out. For example, an expert system might
be asked to determine whether John has
measles. First it would phrase the problem
as a premise to be proved, such as: John
has measles. Then the program would
search for useful rules in establishing the
conditions for measles, such as:1f John has
red spots on his face, then he may have

j
Science Service, Inc. is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%
Science News. MINORY

MECHANICAL

measles or acne; if he has acne, then it’s
likely he’s under 18; if John has measles,
then he probably has a fever; and if he has
acne, then it’s unlikely he has a fever.

In its attempt to reason, the program
would apply various combinations of
these and other rules to establish whether
there are sufficient data to indicate John
has measles. “In fact, what's really going
on in the execution of a logic program is
theorem proving,” Lindstrom explains. A
program systematically searches for data,
in the form of rules, that will help it either
prove or refute the correctness of the orig-
inal premise — in this case, that John has
measles. Along the way, this search will
undoubtedly follow some false leads.
When the futility of such a path becomes
obvious, the program must backtrack and
begin again along an alternate route.

ne of logic programming’s
mstrengths is that it has been specif-

ically designed to employ search-
ing and backtracking as fundamental op-
erations. By contrast, Lindstrom points
out, in LISP, “Though you can program
searches, they are not an inherent part of
its execution.”

“We [who program with a logic lan-
guage] believe that practically everything
to be solved must be logical,” explains
Harvard University mathematician Jan
Komorowski, another convert from LISP to
PROLOG. “I don't want to say that humans
think in logic, but at least we try to think in
alogical way.” So, he asks, why program in
languages like LISP that take a roundabout
mathematical path to emulate logic when
there is a language that allows one to use
logic directly?

“We find logic is perhaps the best way to
store information in a computer,”
Komorowski says. “So we use a logic [lan-
guage] to express information, a logic
query to ask questions and logical deduc-
tion to answer those questions. We don't
use anything but logic.”

Computer linguist Alan Robinson at
Syracuse University in New York also pre-
fers logic programming. “But then I'm in

SCIENCE NEWS, VOL. 125

www_jstor.org



Fifth-generation computers

are expectedto be
engines of inference

the very special situation,” he explains,
“that what people call logic programming
actually grew out of some work I started 20
years ago in computational deductive
processing” —known as resolution.

“The whole point of logic program-
ming,” he says, “is that you're explicitly
doing axiomatic descriptions of problems
and deducing answers from those axioms.
The deduction system is resolution.” A
machine-oriented inferencing system,
“resolution works on two sentences —
both with an ‘if..., then...’ structure—to
deduce a third sentence of the same struc-
ture,” Robinson explains. In the first step,
the internal syntactic structure of the ini-
tial two sentences is analyzed with the
goal of making a substitution. “The key
idea,” Robinson says, “is to try to create by
manipulation a case which looks like:

If A, then B [sentence 1]
and
If B, then C [sentence 2]

where B is now common to both sen-
tences.” From that, through inference, one
can deduce:

If A, then C. [sentence 3]

In most problems, when the computa-
tions begin, the Bs will not appear to be
identical. Through a process called unifi-
cation, however, two things that initially
look different are changed so that they
eventually look alike. This process usually
involves having a program search for and
substitute appropriate, actual values for
variables. According to Robinson, “unifi-
cation is something that goes on at least
half the time in a logic-programming ma-
chine.”

Functional programming —more popu-
lar than logic programming, but still rather
uncommon itself—is characterized by the
application of mathematical functions to a
symbol. “What you do,” Robinson says, “is
successively replace expressions like
(+3,2) with 5. [That's the LISP notation:
the function comes first; in this case it'’s
addition, as signified by the +. What fol-
lows is the ‘argument’ —3,2—to which the
function will be applied.] Functional pro-
gramming computation is just replace-

JUNE 2, 1984

ment of applicative combinations by their
result. It’'s mathematical, but not necessar-
ily numerical. LISP involves functions
applied to symbolic entities of any kind,
not just numbers.”

PROLOG, developed in France around
1970, has until lately provoked little inter-
est outside Europe. LISP, which was devel-
oped in the United States beginning
around 1960, continues to be the predomi-
nant logic- oriented language used for
artificial-intelligence research in this
country. However, the Japanese decision
to go with PROLOG for their fifth-genera-
tion project has both heightened interest
in the logic language and stimulated in-
tense debate over its merits relative to
LISP.

What most people don't stop to realize,
Robinson contends, is that like PROLOG,
LISP too is deductive. “When you compute
with functions, you're also working with
axioms,” he says. “What you write down as
a definition is an axiom about that func-
tion,” he notes. Computing in LISP, he ex-
plains, amounts to “substituting equals for
equals to get equals—classical, euclidean
logical inference sets.” Therefore, “func-
tional programming is deduction with
equations,” he says, while logic pro-
gramming is “computing with conditional
sentences.” g

In an interview with SCIENCE NEws,
Kazuhiro Fuchi, director of research on
the Japanese fifth-generation project, ac-
knowledged, “We are designing at present
a PROLOG machine.” But he added that he
had no commitment to PROLOG and in
fact suspects the prototype system his re-
searchers ultimately develop will use
either a modified and customized son-of-
PROLOG, or some altogether new logic
language. However, he said, for the pres-
ent, “if we want a logic-programming lan-
guage, there is little to choose from but
PROLOG.”

Robinson would also like to see some
choice, which is why he developed LOG-
LISP. “As its name is intended to suggest,”
he explains, “it’s LISP and it’s also logic.”
By hybridizing the two types of program-

ming in this language, he says one gets
“the advantages of both and something
neither of them has — the possibility to do
both types of computing at the same time.”
The version that exists today is essentially
the standard LISP language to which
logic-language features have been added.
“What we're going to do now is start over,
not with LISP, but from scratch,” he says.
“We'll design a single language in which
people will find a means to do both func-
tional and logic programming. But the lan-
guage will have a rationale which encour-
ages people not to think of it that way” —
as being a merger —but rather as a com-
fortable and flexible approach to deduct-
ive programming.

oes it make a difference in which

deductive “tongue” a computer has

been programmed? Several years
ago, computers created specifically to
handle LISP instructions had a definite
speed advantage, Overbeek says. “But cur-
rent research indicates you can produce a
PROLOG machine that would be capable
of pretty impressive [inference] execution
rates — rates similar to those available
with [commercial] LISP machines,” he
says. Moreover, he adds, “I think PROLOG
is an easier notation to work with, unifying
data-base theory with some of the issues
of knowledge representation. And it's
probably easier to teach.”

Komorowski points to another advan-
tage: “It’s usually very difficult to connect
a data base to a programming language”
so that you can retrieve information from
it. “And LISP [users] have more problems
connecting than we [PROLOG users] do,”
he says, “because logic languages ac-
commodate the inclusion of knowledge”
— a representation of those data bases —
within a program. What's more, writing
certain types of programs can be much
easier with logic programming, he main-
tains.

By way of example he points to the writ-
ing of codes for a compiler —a computer
program that translates a high level lan-
guage, such as PROLOG, into the lower
machine-oriented language from which
computers take their actual instructions.
Writing a compiler program “is about 10
times shorter in PROLOG,” Komorowski
says. “That doesn’t mean that we develop a
faster compiler,” he says, “but we can write
a compiler much faster.” That’s important,
he explains, because “human resources
are usually more expensive than com-
puter time.”

All who use logic-oriented program-
ming note it's unlikely their languages will
supplant the more conventional ones like
FORTRAN, BASIC and PASCAL. Explains
Komorowski, “There are some domains
we don't do at all,” and number crunching
is one of them. Why? “We don't yet know
how,” he says. “The logic of this is not re-
ally well understood.” (m]

Next: Lightning-quick machines

347



