THE FIFTH GENERATION

Kyoko Okamoto

LAST OF THREE ARTICLES

of Japan's fifth-generation computer,

through what corporeal manifestation
will it take form? No one knows. Not the
Japanese, Americans or Europeans.
What's being sought is not only a blueprint
for configuring the neural network that
will link myriad cells within this electronic
brain, but also an analysis of what specific
types of cells will be present and where.

Contributing to the difficulty of this de-
sign task are the lofty performance targets
that have been set for these machines:
among them, the ability to execute as
many as one billion logic inferences per
second (a gigalips) and the ability to effi-
ciently shuffle through huge stores of
knowledge — files expected to hold be-
tween 10 billion and 100 billion bytes of in-
formation. (A byte consists of 8 bits —ad-
jacent binary digits — operated on as a
unit by the computer.)

The sheer magnitude of this anticipated
data and inferencing is challenging com-
puter architects’ ability to conceptualize
what must be not only workable but also
efficient hardware configurations. Their
designs must provide for communications
between discrete electronic components,
control the allocation of processing tasks
between functionally related communities
of such components, and simplify the
number of programming instructions that
will be required to execute those logic-
oriented operations — such as searching
and backtracking— which are expected to
typify the way these machines solve prob-
lems (SN: 6/2/84, p. 346).

About the only thing all fifth-generation
architects agree on is that the machinery
must be designed to exploit parallel pro-
cessing (italicized phrases appear in glos-
sary, p. 379), the concurrent execution of
several computer operations. “It used to
be that a computer had one processor,”
explains Ross Overbeek at Argonne Na-
tional Laboratory, near Chicago, meaning
that serial, also known as sequential pro-
cessing, was the rule. “But the Japanese are
talking about execution rates on the order
of 10 million to a billion inferences a sec-

uf logic programming is to be the soul

378

IN SEARCH OF

By JANET RALOFF

ond, something that I think will only be
achievable through use of fairly massive
multiprocessing,” he says, using many in-
dividual processors.

There are several ways to accomplish
parallel processing. For example, one ma-
chine being specially designed to execute
PROLOG, a logic-programming language,
would make creative use of a single proces-
sor. According to its architects, PROLOG-
implementation expert David H. D. Warren
and Stanford University computer architect
Evan Tick, simulated program runs indicate
that this machine might be capable of
executing 400,000 lips at peak capacity.
Right now, Warren points out, their machine
is just “a paper design.” In fact, Tick notes,
“our design hasn't specified something that
you'd actually build. We're just looking at
the critical paths, seeing if it's feasible to ac-
tually build such a system, and if so, what
its performance would be.”

Tick is focusing on its hardware require-
ments. Organization is rather conventional,
he says, explaining that the computer
would use a single processor and large
memory. What makes the processor “inter-
esting,” he says, is that it amounts to a
three-stage pipeline. “The actual hardware
would be partitioned into stages, like an ac-
tual pipe,” he says; computer instructions
“would flow through these stages.”

Because of this design element, as many
as three instructions could be operating
simultaneously in the pipe, Tick says. How-
ever, the system has been designed so that
individual sets of data can only be operated
on by one instruction within the pipe at a
time. To get three instructions occurring at
once, all must use different data. “Studies
I'm doing now are to determine how fre-
quently the bad things would occur,” he
says, referring to system inefficiencies
caused by data tie-ups that leave one or two
stages of the pipeline temporarily empty.

Among the unique architectural details
of this PROLOG machine, Tick notes, is use
of “choice points” in the system’s stack buf-
fer. This buffer is sort of the equivalent of a
fast memory, Tick says, for temporary stor-
age of several sets of data or information

IS8 (¢
Science Service, Inc. is collaborating with JSTOR to digitize, preserve, and extend access to 22
Science News. MINORY

pertaining to procedures that may be
recalled in the near future. Problem solving
with logic programming involves orderly
searches among collections of rules. The
goal is to find data that logically prove a
premise. If, during these searches, a promis-
ing lead suddenly turns out to be a dead
end, the program must backtrack to the last
point it had a choice of leads to try,and then
begin again along some new computational
path. By keeping a record of the last choice
point, Tick says, the program can auto-
matically back up to that point whenever
necessary, then speed on in its search.

While the degree of parallelism possible
with this particular architecture is limited,
the design is noteworthy within the context
of fifth-generation systems for its attempt
to optimize machine-level support of in-
ferencing. In an interview with SCIENCE
NEws, Kazuhiro Fuchi, director of the Insti-
tute for New Generation Computer Tech-
nology (ICOT) in Tokyo, explained that in
his view, logic programming was probably
insufficient for achieving the inferencing
performance that would be asked of fifth-
generation systems. So in addition to pro-
gramming, he says, “the machine should
have inferencing capabilities as a basic ma-
chine operation.”

At least that’s how ICOT, which is spear-
heading Japan’s fifth-generation program,
will be approaching design of an initial
PROLOG-based machine, he says. By way of
indicating how such machine-level in-
ferencing support might be represented, he
says the binary O’s and 1's, or on/off steps,
used for computing in conventional ma-
chines today might be replaced by use of a
“go-to” or “don’t go to” as fundamental
processing operations.

Like Warren and Tick's design, Fuchi says
ICOT? initial machine will probably contain
a single processor. However, he says a range
of designs employing many processors will
also be explored for use in later phases of
the ICOT 10-year program. Among those he
finds most promising is “data flow,” one of a
class of concepts described as being “non-
von Neumann.”

“In von Neumann architecture [named

SCIENCE NEWS. VOL. 125

www_jstor.org

GIGALIPS ARCHITECTURES

Fifth-generation computer architects
are exploring the design of machines
for lightning-quick reason

for the mathematician who wrote the first
widely circulated description of a logic
framework for stored-program computers
and for programming concepts (SN:3/13/82,
p. 172)). instructions are held in successive
locations in a computer’s memory and they
are executed one at a time.” explains Jack
Dennis, of the Massachusetts Institute of
Technology in Cambridge. Controlling the
executions, he explains. “is a pointer which
moves through the memory one step at a
time." Though one can sometimes figure
out how to execute more than one instruc-
tion at once, when using a machine with
von Neumann architecture, he says “the
program will always look as though only
one execution were going on.”

In contrast, the order in which instruc-
tions will be performed within a data flow
machine is determined by the availability of
the data needed for their execution, ex-
plains Dennis, who more than any other in-
dividual is credited with invention of the
data flow concept. For instance, he says, “if
you have an ‘add’ instruction and the two
operands to be added have been computed,
then that instruction is made available for
execution.” Envisioned to ultimately em-
ploy thousands of processors, any or all of
the data flow machine’s processors may
operate simultaneously. depending on the
availability of data each needs to stay busy.

sing a functional-programming

language called VAL, Dennis and

colleagues at MIT are exploring the
potential of data flow machines for harness-
ing massive parallelism to expedite proc-
essing of huge numerical scientific compu-
tations, such as are involved with weather
prediction and fusion reaction modeling. “If
you wanted to solve artificial-intelligence
problems on this machine [as in fact, the
Japanese have said they will attempt to do]
you would find it quite a challenge to use it
efficiently,” Dennis told SCIENCE NEws.

The problem, explains colleague Gary
Lindstrom, “is that data flow architectures
are primarily oriented to functional lan-
guages — that is, toward doing computa-
tional steps in preplanned orders.” So, he

JUNE 16, 1984

explains, “there is the question of how one
represents the search that needs to be done
in executing a logic-programming lan-
guage. because it's not automatically there
in the architecture” as it is in the Warren
and Tick design. Lindstrom understands
this problem well. At MIT on a leave of ab-

Glossary

Architecture — the way in which a com-
puter’s hardware — physical components
— are configured so as to support and
interact with programs.

Controller—the part of a processing unit
or system that directs the step-by-step
operations required to solve a problem or
that part of the problem over which it has
been given control.

Expert systems — programs that apply
artificial-intelligence techniques — such
as rules of inference — for problem solv-
ing in a narrowly focused subject area.
These systems usually derive their exper-
tise by consulting lists of facts, rules-of-
thumb and observations gleaned by
querying human experts.

Functional programming — the ordered
lists of functions (mathematical proc-
esses, such as calculations of the square,
cosine or inverse of something) that di-
rect sequences of computer operations.

Implementation — the representation of
a programming language on a specific
computer system; for example, a version
of FORTRAN on a particular computer.

Instruction — the message, usually
characterized by a group of characters,
bits (binary digits — either 0 or 1) or
groups of bits, that defines an operation a
computer is to perform.

sence from the University of Utah. he is
tackling — as the Japanese are — develop-
ment of a scheme to implement logic pro-
gramming on a data flow architecture.
“The data flow world is divided into three
schools of thought.” Lindstrom points out.
“Dennis represents what's called the 'static’

Logic programming — rule-based,
logic-oriented set of instructions by
which computers make inferences.

Memory —the unit(s) within a computer
or integrated-circuit chip in which data
are stored.

Multiprocessing — simultaneous or
parallel processing of several operations
at once, accomplished within a single
computer through use of more than one
processor.

Parallel processing — concurrent or si-
multaneous execution of two or more
processes in the same computer.

Processor—a device or system capable of
performing operations, such as addition,
on data.

Program — ordered instructions that di-
rect sequences of computer operations.

PROLOG — a rule-based, logic-pro-
gramming language designed for artifi-
cial-intelligence applications such as ex-
pert systems. An acronym for “programm-
ing in logic,” PROLOG is Japan’s current
preference for fifth-generation systems.

Sequential processing — execution of
processes, such as individual additions,
serially within a computer such that they
occur one after the other.

379

data flow community, within which com-
puters are designed primarily for intensely
parallel, high speed execution of programs”
of a large and essentially numerical nature.
“There, in order to get the intense paral-
lelism and speed, the functional languages
used are quite highly structured.” Moreover,
Lindstrom notes, “the kind of flexible
sequencing that is required in a logic-
programming search is not really even ap-
propriate.”

The second school is “dynamic” data
flow. Instead of designating beforehand
which machine processors will handle
which problem solving tasks, dynamic data
flow architectures more flexibly schedule
processors as they become available,
Lindstrom says, noting that this is prefer-
able when problems are so complicated
that mapping the most efficient path to
their solution becomes unfeasible.

The third data flow school represents the
one Lindstrom belongs to. The reduction
machine its adherents are designing is not
data driven as the other data flow machines
are, Lindstrom says. In data-driven ma-
chines, “pieces of the program are invoked
or activated by the availability of data for
execution. If you take the analogy that the
program is a connection of functions, in
boxes, that are connected by pipes through
which data flow, then the static and
dynamic data flow machines operate by
pressure,” Lindstrom says, “pushing data
through this plumbing network.” Reduction
machines, with a similar network, work in-
stead “by suction,” Lindstrom analogizes.
It's the overall need for a solution that prop-
agates signals through this network, caus-
ing functions to be applied in a much more
unpredictable manner. “So there is conjec-
ture,” he says, “that reduction machines
might be a nice way to accomplish the
parallel data-dependent search that one
needs for logic programming.”

avid Shaw believes he’s building

“one of the two most parallel ma-

: chines” around. Named NON VON to
connote its non-von Neumann design, the
Columbia University project Shaw heads in
New York should produce a very small pro-
totype that operates by year’s end. It is
slated to contain 64 processors, each bear-
ing a tiny memory of 64 bytes each. A
commercial-scale computer would ulti-
mately have a million or more of these

@The static and dynamic
data flow machines
operate by pressure,
pushing data through the
plumbing network.®

380

small processors, each linked to slightly
larger memories. But conceptually, NON
VON's most important characteristic is the
fact that each processor will be paired
with a single data element (stored in one
or more associated memories) that’s to be
manipulated “so that the data elements
seem as if they're capable of doing work
themselves,” Shaw explains.

Underpinning NON VON'’s architecture
isastructural configurationknown as a “bi-
nary tree.” In it, a single, tiny processor is
connected to two identical ones beneath it,
each of which is in turn connected to two
more below it, and so on. A million identical
processors may ultimately be connected in
this manner.

At the top few levels of this organi-
zational tree — down to where one might
find 256 processors — each tiny processor
would also be tied into its own additional
large processor. These larger processors
can work alone or can broadcast an in-
struction to all small processors in the sub-
tree under and including the small proces-
sor to which it is linked. Finally, “all large
processing elements are connected to each
other through what we call a high-band-
width interconnection network,” Shaw says,
“which means they can send a lot of infor-
mation around very quickly. That’s some-
thing that isn’t possible between all of those
small processing elements.”

“Just so you know the motivation for all
of this,” he explains, “there’s no way to con-
nect a million processing elements to each
other so that they can send data to each
other quickly. But what you can do is have
some small number, like 256, talk to each
other.” Because the small processors don't
have enough memory to store individual
programs, all they can do is what they have
been told to do. Memories associated with
the larger processors can store small pro-
grams, so these processors can handle a
small amount of work autonomously. “But
the most important thing they do,” Shaw
says, “is broadcast instructions to the small
processing elements.”

For instance, employee records for a
company could be filed in a NON VON such
that each processor manipulated data on a
single employee — essentially keeping cur-
rent that person’s address, salary and other
personnel details. Explains Shaw, “Then if
you'd like to do something like raise
salaries of all employees in the sales de-
partment, a central-control processor [one
or more of the larger processors] would
broadcast a series of instructions that
would tell all the small processors to look at
themselves [their associated memories],
figure out if they're in the sales department,
and if they are to give themselves a 10 per-
cent raise.”

Alternatively, the computer might be
asked for the average employee salary.
“Rather than adding them all up one by
one,” Shaw says, “NON VON allows one to
add them pair wise —with each binary pair
sending up their sum to their parent pro-
cessor [up the tree].” By this route, Shaw

notes, “If you add a million employees it
would take you only 20 steps—instead of a
million.”

To Shaw, the only architecture rivaling his
in parallelism is the Connection Machine
under design at Thinking Machines Corp. in
Waltham, Mass. It’s architecture is the
brainchild of W. Daniel Hillis. “What makes
it a little bit different,” Hillis explains, “is
that this was designed starting from a prob-
lem—how to make a computer that will do
‘semantic network’ reasoning [reasoning
based on an understanding of relationships
between concepts] — rather than from the
goal of just making a faster computer.”

It shares several similarities with NON
VON: Each of its ultimately one million tiny
processors would be paired with a tiny
memory (of a few hundred bits), several of
these processor/memory pairs would re-
side on each integrated circuit chip, and
each pair would essentially represent a
single fact—such as, the sun is a star.

The design goal is to have the small pro-
cessors listen collectively to a question —
translated from a human request and put
before them by a controller processor —
and then to settle on some deduced answer
after discussing among themselves the rel-
evant facts. In contrast to NON VON, there is
greater egalitarianism among the proces-
sors.

“When putting in a knowledge base, you
actually form connections between proces-
sors that are associated with each other’
Hillis notes. For instance, he says, “all the
things having to do with physical objects
are connected together via this network,
which is why we call it the Connection Ma-
chine. Essentially the data is the connec-
tion.”

Traditional interconnection structures
for randomly accessible memories are two-
or three-dimensional lattice arrays. For a
two-dimensional square array —an N X N
array — the maximum time it will take any
processor to communicate with another is
proportional to 2 X N. Therefore, a
million-square array of processors would
require time proportional to 2,000 machine
cycles to communicate between opposite
vertices of the array. However, in the Con-
nection Machine, a second set of intercon-
nections overlays the system. Hillis says it
can be thought of as “neighboring clusters
of 64 processors and their associated
memory elements aggregated on individual
chips.”

The plan is to put up to 64 processors on
a chip. In the one-million processor ma-
chine, 16,384 such chips would be inter-
connected “as if they were the vertices of a
hypercube in 14-dimensional space — in
addition to their square-array connec-
tions,” Hillis says. The advantage is that “a
message can be transmitted from any
processor or any one of these chips to any
other processor in time proportional to 14
cycles (that is, proportional to the base-2
logarithm of the number of chips) rather
than the 2,000 cycles required by a
square-array communication network,”

SCIENCE NEWS, VOL. 125

One of the architect’s

first dilemmas is how to
link processors and
memory units to
maximize data trans-
mission and

communication/coordination
between processors

while minimizing data
tie-ups. Each processor
could contain a tiny
companion memory and

be linked via communi-
cation channels like a

series of little islands
(near right). Or proc-
essors could draw data
from a common memory
(far right). There are

nearly endless
possibilities.

[Communication channels [Memory [N Processor

— -

Univ. of Calif./Lawrence Livermore Natl. Lab./DOE

he explains. Moreover, he says, this hyper-
cube network “makes it possible for the
Connection Machine computer to operate
as if it were continually being dynamically
reconfigured under software control to
adapt itself to the structure of the problem
itis running.”

Says Hillis, “We want to make a machine
that can genuinely be said to think.” A pro-
totype, now under construction, will have
100,000 processors. Directed specifically
toward artificial-intelligence understand-
ing, it would aim to become the opposite
of an “expert system” — perhaps an “ama-
teur system,” Hillis says. “We're more in-
terested in the sort of knowledge that a
six-year old has than an expert in diagnos-
tic medicine,” he explains. “We're inter-
ested in the commonsense reasoning that
lets you understand why you should put
on the sock before the shoe. That’s prob-
ably a much harder and more interesting
problem to do than analyzing how a chess
master forces a checkmate. There's cer-
tainly much less known about it.”

t Argonne National Laboratory,

Overbeek and colleagues are pre-

dicting a less radical architecture
will make the bridge from the fourth to
fifth generations, which he explains is why
“we're implementing a portable, multipro-
cessed PROLOG” for an MIMD machine.
Overbeek describes MIMD (which stands
for multi-instruction/multi-data) in terms
of a data-processing factory where, to-
gether, workers engage in the construc-
tion of a single project—a deduction. Each
processor, or plant worker, slaves away at
subtasks, occasionally stopping to con-
verse with fellow workers — telling them
when to expect his subtasks to be finished,
asking whom he should send them to, de-

JUNE 16, 1984

ciding who's project he’ll take on next. For
much of the time, however, processors toil
semiautonomously, conducting varied
tasks in a flexible ordering.

“The tricky part,” Overbeek explains, “is
how you pass things back and forth.” The
goal is to keep each worker’s communica-
tion to a minimum and computation to a
maximum. However, he notes, there are a
number of questions on whose answers the
future applicability of these machines now
seems to pivot. For instance, how many
subparts can a large problem effectively be
broken into without creating an efficiency-
robbing communications bottleneck be-
tween processors? Will efficiency fall as
many processors are forced to await com-
pletion of some long, indivisible subtask
upon whose answer the rest are depend-
ent? Is it better to have a few processors
each tackling moderately involved and time
consuming computations, or to have a mul-
titude of processors each performing sim-
ple tasks?

Unlike many of the other architectures,
this one seems certain to become commer-
cial soon. MIMD supercomputers — gener-
ally with well under 25 processors—are al-
ready being developed for introduction
within five years. Among them is the HEP-II
by Denver-based Denelcor. “] personally be-
lieve it has non-numeric capabilities,”
Overbeek says. “It may well be a machine
with this type of architecture which is ca-
pable of executions on the order of 10 mil-
lion to a billion inferences per second. At
least that's the basic thesis my partner and [
have made, and that's what we’re investigat-
ing now. We have a HEP-1 [among the first
commercially built multiprocessor sys-
tems] where we're building a parallel PRO-
LOG in hopes that it will be capable of
execution at enormous rates on the HEP-IL.”

he designs described here only skim
T the surface of work being exploited
by architects of the fifth generation
in computing. For example, 28 separate
university and industrial laboratories in
this country alone are pursuing data flow
concepts. Europe, particularly England, is
gaining renown for its architectural pur-
suits. How does this compare with Japan?

Harold Stone, a computer scientist at the
University of Massachusetts in Ambherst,
has made frequent trips to Japan’s comput-
ing centers and recently coauthored an
overview of that nation’s fifth-generation
program with University of Tokyo computer
architect Tohru Moto-oka in the journal
CoMPUTER. According to Stone, the
Japanese are far ahead in being able to con-
struct MIMD machines and in demonstrat-
ing them. “l saw more working [MIMD] ma-
chines at Japanese universities than | have
in the United States,” he told SCIENCE NEws,
adding that although a few US. efforts are
exceptional, “in Japan they have programs
that are almost as interesting — or very
close—and they're everywhere.”

But what has impressed him most is how
Japan’s researchers strive to refine ideas. “I
can safely state that in the area of fifth-
generation architecture,” Stone says, “the
normal paradigm is to generate an idea, and
then to leave it without trying to figure out
whether it's good or bad.” Not the Japanese.
“Their approach,” he says, “is to develop an
idea, carry it through, measure its perform-
ance, find out where it's bad and then to
make it better. So while we're generating
more new ideas in the US,, if there are
weaknesses in them, they probably haven't
been found yet,” Stone says. His conclusion:
Western researchers had better mend their
ways—and fast—or they'll find themselves
treading water in Japan’s wake. O

381

