In Search 0

Speedier Searches

FaNThE gL

Tables or lists that rearrange themselves in just the right way
within a running computer program can

By IVARS PETERSON

Microseconds matter. Every extra step
that a computer takes to find a bit of data
or to do a simple operation takes time. Re-
peated thousands of times, the extra steps
add up to long delays in computer pro-
cessing that may stretch into minutes or
hours.

With this in mind, many computer sci-
entists and applied mathematicians have
thought long and hard about ways to make
a computer’s search as simple and effi-
cient as possible. This has led to the inven-
tion of a variety of “data structures.” In
general, a data structure — whether in the
form of a list, table, array or tree —
specifies the items involved (perhaps a set
of names, telephone numbers or key
words) and what can be done to those
items. A list of names and telephone num-
bers constructed so that specific tele-
phone numbers can be found, new num-
bers added and old numbers deleted is
one example of a simple data structure.

T a0 ThEgToe

In the case of a telephone directory, the
most naive way of programming a com-
puter to find a specific number is to ask it
to start at the top of the list and keep on
going, checking each entry one by one,
until it finds the requested item. If fre-
quently called numbers appear near the
end of a list, the computer could spend an
unnecessarily long time searching for the
numbers. The answer may be to use a
dynamic data structure that changes as it
is used.

“People tend to program things in a very
naive way,” says Robert E. Tarjan of AT&T
Bell Laboratories in Murray Hill, N.J. Yet,
“there are reasonably simple data struc-

170

tures they could be using that conceivably
would improve things tremendously.”

One method that could speed things up
is to allow items within a list to reorganize
themselves according to how often they
are called upon. For example, each ac-
cessed item can be automatically moved
by swapping places with its predecessors
until it gets to the front of the list. Because
the most frequently accessed items will
end up close to the front, the computer
will find them more quickly. Although the
“move-to-front” operation itself takes
some time, the hope is that over the long
run, there will be a net saving.

T a0 T g VoA

Alternatively, a single exchange, in
which the accessed item is swapped only
with its immediate predecessor, may be
good enough to decrease computer
search times. Another approach is to know
ahead of time or keep track of how often
items come up. In this “frequency-count”
case, the items are listed according to how
often they are likely to be accessed, and
the items don’t change their order later.

Working with Daniel D. Sleator, Tarjan
has been studying the mathematical
properties of these schemes, especially
the “move-to-front” idea, to see how effi-
cient they really are. “We’d like to prove
that this thing is efficient in some
general-purpose way,” says Tarjan. “The
idea is that on any sequence [of opera-
tions] whatsoever, this data structure per-
forms as well as any other data structure
within the same class.

“The proofs are hard to come by,” says
Tarjan. The intriguing property of these
data structures is that they are extremely

j
Science Service, Inc. is collaborating with JSTOR to digitize, preserve, and extend access to éﬁg%
Science News. MINORY

save a lot of time

simple to program, yet they’re very dif-
ficult to analyze because the structure is
constantly changing over time.

TN T VoA

“It’s hard to analyze in the same way that
strange attractors [SN: 4/26/84, p. 328] are
hard to analyze,” he says. “Here, we have
an algorithm on a discrete structure,
which we are iterating, and in some sense,
we want to know the steady-state behavior
of this thing. You can run computer simu-
lations, and you seem to get the answer.
The mathematical question is, how do you
prove it?”

So far, both theoretical results and ex-
periments performed on real data indicate
that the “move-to-front” scheme works ef-
ficiently in a wide variety of situations. For
instance, John L. Bentley, now with Bell
Labs after working at Carnegie-Mellon
University in Pittsburgh, tried the methods
on English-language text and the names of
variables in computer programs written in
languages like Pascal. He and his students
found that the “move-to-front” technique
worked as well as and sometimes better
than the “frequency-count” method. The
“single-exchange” method adjusted too
slowly to improve search times signifi-
cantly.

Tarjan cites two advantages in using
“self-adjusting” data structures. “They'’re
very simple, which makes them easy to
program,” he says. Although other, more ef-
ficient algorithms for searches have been
invented, most turn out to be “so hard to
program that people are not willing to take
the time to do it.”

The other advantage from a purely prac-
tical point of view is that these structures

SCIENCE NEWS, VOL. 126

e

www_jstor.org



Self-Adjusting Binary Search Trees

Assingle “rotation” rearranges
a portion of a binary tree:

A “splay” step, involving several rotations, brings
node X to the root of a simple binary tree:

AN\

“rotation” l

B\ Lo\

Case 1

LAy

z

A
LN

Case 2 Z

/AN B\ [\ /o

adjust to fit input data or changing patterns
of requests. With a fixed data structure, “if
the data don't fit your model of what the
data are supposed to look like, you can
lose,” says Tarjan. In the past, programmers
have tended to design structures that may
be efficient on the average or fit a certain
situation or a particular pattern of input
data. “With these self-adjusting structures,
you're guaranteed to get pretty good be-
havior,” he says.

TN "€ g Tia

Lately, Tarjan and his colleagues have
been applying the same idea to binary
search trees. In this case, items are orga-
nized so that they are linked in a definite
pattern. The starting point (or root)
branches into two nodes. These nodes, in
turn, each branch to form two more nodes,
and so on. The question is whether there is
an equivalent of the “move-to-front”
method for these binary search trees. In
other words, if the computer often needs in-
formation stored at particular nodes, is
there a way to move those items close to
the root and so rearrange the tree to make
searches more efficient?

Tarjan’s answer is to use a move called a
“rotation” that shifts the connections be-
tween the nodes in a specific way (as illus-
trated). A combination of rotations to give a
sequence of steps he calls a “splay” moves

SEPTEMBER 15, 1984

the accessed item to the root of the tree,
and as a bonus, also approximately halves
the distance from the root of the tree
(where the computer would start its
search) to any particular node.

“Whenever the tree is accessed, certain
adjustments take place along the access
path,” says Tarjan. Although making the ad-
justments takes time, the overall procedure
is very fast in many situations for a long se-
quence of requests or accesses. This is es-
pecially true when the pattern of requests is
nonuniform or somewhat unpredictable.

Self-adjusting search trees turn out to be
very nice for allocating space within a
computer’s memory, says Tarjan. “We've
done some experiments on that at Bell
Labs, and it seems to work quite well in
practice.”

TN ThE g LA

When working with large, shared com-
puters, users are continually asking for
blocks of storage space of a certain size. As
the number of users and their needs
change, the computer’s operating system
must have a way of allocating new requests
for space. In the simplest approach, called
“first fit,” the computer scans, from front to
back, a list of all the available memory
blocks until it finds a “hole” or free space
large enough to accommodate the request.
The problem is that the front of the memory

gets chopped up, usually leaving only tiny
chunks free. The computer has to scan over
an increasing number of these small holes
until it finds one large enough to use. “The
memory allocation routine itself starts to
slow down eventually,” says Tarjan.

If you use a self-adjusting binary search
tree to represent the holes, says Tarjan,
“then you can really speed up the allocation
process.” Each node corresponds to a block
of memory. “The clever trick here is that
you can store the tree information in the
free blocks themselves,” he says. The tree
structure sits in the unused space, and as
the unused space fills up, the tree gets
smaller.

Now, Tarjan is thinking about looking at
more complicated search trees and at ar-
rays that contain several bits of data in each
location. “The most general issue is to ex-
plore other situations in which this idea of
self-adjustment would be applicable,” he
says. “It’s a very general notion, and I think it
should have very general applications.”

TN ThE gVl A

The ideas are also simple and can easily
be applied to programs for microcomput-
ers. “Some of these very simple ideas may
have potentially huge practical payoffs, es-
pecially in a limited resource situation like
a personal computer,” says Tarjan. “They
deserve to be tried out.” O

171



