Three Bites in a Doughnut

Computer-generated pictures contribute to the discovery of a

new Mminimal surface

By IVARS PETERSON

Zahe iridescent shimmer and the
smooth perfection of a soap film
stretched taut across a wire frame
has long evoked a strong fascination.
Thls geometric surface, so graceful and
economical, represents a soap film’s physi-
cal solution to the mathematical problem
of finding the smallest area that spans a
given curve.

Over the years, mathematicians have ex-
tended this concept of a “minimal surface”
to include forms that no soap film can take
on. Says mathematician David A. Hoffman
of the University of Massachusetts in
Ambherst, “The collection of all possible
minimal surfaces is extremely rich, compli-
cated and not yet completely understood.”
Now it takes a computer to draw some of
the figures that come up in the study of
these special surfaces.

Recently, Hoffman contributed to the dis-
covery of a new minimal surface, one that
meets such tight mathematical conditions

that it is the first of its kind to be found in
almost 200 years. Computer graphics
helped him visualize the surface. Then, he
was able to prove mathematically that this
surface has the required properties.

“We were surprised that computer
graphics could actually be used as an ex-
ploratory tool to help us solve the prob-
lem,” says Hoffman. “The surface couldn't
be understood until we could see it. Once
we saw it on the screen, we could go back to
the proof.”

The type of surface that Hoffman and his
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colleague William H. Meeks IIl of Rice Uni-
versity in Houston investigated is a “com-
plete, embedded, minimal surface of finite
topology.” The term “complete” means that
the surface, roughly speaking, has no
boundaries. A smooth plane that extends in
all directions without end is one example of
a complete surface. It also happens to be a
minimal surface because putting any kind
of fold into the plane increases its surface
area. Thus, an infinite surface can also be a
minimal surface if each piece of the entire
surface individually has the smallest
possible area within the piece’s boundaries.

Another example of a complete minimal
surface, called the catenoid, looks like an
infinitely extended hourglass. The soap film
that connects two parallel circles of wire as
they are pulled apart looks like the central
piece of a catenoid. Both the catenoid and
the plane are also “embedded” surfaces be-
cause they do not fold back and intersect
themselves.

gaurfaces can also be classified ac-
cording to their fundamental form or
topology. Two surfaces have the
~3¥ same topology if they can be twisted,
stretched or deformed in some way to con-
vert one form to the other without tearing,
cutting or gluing a surface. By this defini-
tion, a simple bowl and a ball have the same
topology, while a doughnut (or torus) and a
one-handled teacup represent the next,
higher category. A pretzel, with two holes or

“handles,” goes another step farther.
In addition, each topological surface can
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Computer-generated
pictures helped
David A. Hoffman
(above) convince
himself that he really
had found a new min-
imal surface. This led
to a mathematical
proof that this figure
had the right
properties to qualify
as a complete, em-
bedded minimal sur-
face. It now joins the
plane, the helicoid
(left) and the
catenoid (right),
which were the only
previously known
surfaces of this type.

have a number of “pinpricks” or “ends.” A
sphere with one such puncture point can be
stretched out to form an infinite plane. This
is somewhat like pulling on the rim of a
narrow-mouthed clay pot to widen the pot’s
mouth and overdoing it in the process. A
sphere with two puncture points can be de-
formed into the infinitely extended
hourglass form of a catenoid.

Until the work of Hoffman and Meeks, the
plane, catenoid and helicoid (imagine a
soap film stretching along the curves of an
infinitely long helix or spiral) were the only
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known examples of complete, embedded,
minimal surfaces of finite topology. A few
mathematicians had even quite recently
speculated that these were the only
possible examples.

Nevertheless, says Meeks, “There were
reasons for suspecting that these surfaces
exist. If they were to exist, they would have
certain symmetries, and from the symme-
tries one can derive the equations.”
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The first, rough view (right) of what the equations looked
like provided important clues about the nature of this new
minimal surface, but it took views from many different
angles before Hoffman could see its “true” form (above).

offman started with the equations
for a surface first written down by
aBrazilian graduate student, Celso

¥ J. Costa. in his doctoral thesis.
Costa was able to prove that this particu-
lar surface is minimal and complete. He
also knew that topologically it is equiva-
lent to a sugarcoated doughnut from
which three bites have been taken. The
bites indicate that the surface, when de-
formed. can extend to infinity in three
places.

Meeks and Hoffman hoped that this sur-
face would also meet the requirement that
it be embedded. Mathematical clues indi-
cated that the surface contained two
catenoids and a plane that all somehow
sprouted from the center of the figure. “We
couldn't tell from the equations what was
happening,” Hoffman said at a recent
meeting in Anaheim, Calif., of the Ameri-
can Mathematical Society. “It was hard to
see what was happening in the middle.”

With the help of the graphics program-
ming skill of graduate student James T.
Hoffman (no relation), David Hoffman
computed numerical values for the sur-
face's coordinates and drew pictures of its
core. He knew that if he saw evidence that
the surface intersected itself, then the sur-
face would not be embedded and this par-
ticular mathematical quest would be over.
If there was no visible evidence of an inter-
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section, then he could go ahead with try-
ing to prove that the surface really was
embedded.

The first pictures did indicate that the
surface was free of self-intersections. See-
ing the surface from different points of
view also showed that it had a high degree
of symmetry, but it took “extended star-
ing” to piece together the true form of this
new minimal surface, says Hoffman. “How

it fitted together was not obvious.”
Hoffman puzzled over the computer pic-
tures for days. The images had to fit to-
gether somehow. “All of a sudden, it came
together, and all of the pieces fit,” he says.
“But after that, being able to convince
others what it was like took still longer.”

7z his new minimal surface, as re-
vealed by computer graphics, has
the elegance of a gracefully spin-
‘% ning dancer flinging out her skirt
ina honzontal plane. Gentle folds radiate
from the skirt’s waist. Two holes pierce the
lower surface of the skirt and join to form
one catenoid that sweeps upward.
Another pair of holes, set at right angles to
the first pair, lead from the top of the skirt
downward into the second catenoid.

The surface is made up of eight identical
pieces that fit together to make up the
whole figure, says Hoffman. It also con-
tains a pair of straight lines. “These tips
made it possible to analyze the equa-
tions...,” he says. “This in turn led to a
mathematical proof that this surface was
in fact a new embedded, complete, mini-
mal surface of a finite type, the first new
one to be found in nearly 200 years.” Later,
Meeks and Hoffman showed that infinitely
many examples of this type of minimal sur-
face exist, one for each topological class
with one or more “handles” and three

“ends.” This work has opened up a new
realm of geometric forms to explore.

“The computer was used in a situation
where physical experimentation was im-
possible,” says Hoffman. In the past, math-
ematicians and physicists sometimes
worked with soap films to investigate min-
imal surfaces and the special differential
equations for which these surfaces are so-
lutions. Even today, some architects use

soap films and models to design sweeping,
tentlike roofs for buildings. In many cases,
however, soap films are unsuitable be-
cause the surfaces involved extend to in-
finity and the equations representing them
are very complicated.

“To stretch the point a bit, computer
graphics are to research on minimal sur-
faces ‘in the large’ what soap films are to
research on minimal surfaces spanning a
wire contour,” Hoffman says.

More important, the computer was used
as a guide in the construction of a formal
proof. For a mathematician, seeing is not
believing. Hoffman was able to explore
ideas for proving the desired results by
checking them first visually in a computed
image. “Computer graphics functioned as
an experimental tool in nailing down the
proof,” says Hoffman.

“The examples themselves are very
beautiful,” says Meeks. “They're very in-
teresting because there wasn't much
known about them.” With these examples
in hand and the possibility of inventing
new minimal surfaces with more than
three “ends,” Meeks and Hoffman are now
developing a general theory to describe
the occurrence of these special minimal
surfaces.

Hoffman adds. “This has also been the
most fun of anything that I've ever done in
my career.” a

169



