Commentary

‘Ptarmigans Wheeling Owver the Gorse’

At the recent Third Loyola Conference
on Quantum Theory and Gravitation, held
at Loyola University in New Orleans, David
Hestenes of Arizona State University in
Tempe urged all physicists working to-
ward a unified theory of physics to use the
same mathematical language. Such a
theory would eventually explain every-
thing in physics in a connected way, and
Hestenes thinks those working toward it
should talk the same language.

As anyone who has ever done a transla-
tion will know, the verbal languages of
humanity are not exactly congruent to one
another. The meanings of words and the
images they evoke seldom coincide
exactly from language to language. Dis-
parities of grammar and syntax compound
the difficulty. Many years ago in a course
on French stylistics I was subject to a
textbook that contained snippets from fa-
mous English authors, which we were
supposed to translate into French. One of
those passages had “ptarmigans wheeling
over the gorse.” The translating dictionary
gives lagopéde for “ptarmigan.” Assuming
it's the same species —and remember, for
example, that the crustaceans designated
by homard, langouste and langoustine in
French do not divide up the same way as
those called “lobster” and “crayfish” in
English — that’s a start. “Gorse” grows in
both countries; it is broom plant, plante de
genet, in French. The real kicker is how to
express in French the images called up by
the verb “wheel.” For sophomores that
was a serious problem, and I don't re-
member how any of us solved it, but that’s
not the point.

Surely such things don’t happen with
mathematics. which is designed to be log-
ical, denotational and nonaffectional. But,
au contraire, they do. A famous historical
example comes from the early days of
quantum mechanics. Erwin Schroedinger
had devised a way of representing quan-
tum mechanical processes by wave
equations, known as wave mechanics.
Werner Heisenberg developed a formula-
tion using matrices, arrays of numbers
that represent groups of related algebraic
equations. Physicists were disturbed by
these two radically different ways of rep-
resenting the same thing — surely one of
them had to be wrong. According to the

122

Surely such
things don’t
happen with
mathematics. . .
But, au contraire,
they do.

story, confusion persisted until the great
Gottingen mathematician David Hilbert
showed that the two formulations were
mathematically equivalent. But that didn't
stop them from looking different.

Part of the problem is that physicists
often do not study mathematics systemat-
ically. They tend instead to learn the
mathematics they need to do the physics
— or, as Isaac Newton did, to invent it.
When they try to formulate a new piece of
physics, they usually reach for something
familiar even if it is not always the most
apt choice. Mathematicians often com-
plain about the cavalier attitude of physi-
cists to mathematics.

“How to design a language for mathe-
matical physics?” Hestenes asks. “How to
express its geometric content?” Physics
has always been close to geometry. In
classical physics, objects can have
characteristics such as velocity or accel-
eration for which a direction as well as an
amount must be specified to have a com-
plete description. Other properties — for
example, temperature or pressure — can
vary from point to point in a given region
of space.

Modern physics makes the relationship
with geometry even more intimate. In
classical physics, geometry defines the
playing field on which physical processes
work themselves out; in modern physics,
geometry becomes part of the game. After
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Einstein had made time into a geometrical
dimension, he proceeded to make gravi-
tational forces identical with a geometric
quality, the curvature of space. Kaluza’s
and Klein’s attempt of 60 years ago (SN:
7/7/84, p. 12) to relate electromagnetic
phenomena to a proposed fifth dimension
has recently been revived in an altered
form that allows a large number of extra
dimensions to relate to a variety of physi-
cal properties.

Even before the resurrection of Kaluza
and Klein many of the “internal”
properties of subatomic particles, the
properties that go together to define one
kind of particle or another, had close con-
nections to geometry. The schemes most
widely used to make some sense and order
of the way these properties vary as one
kind of particle changes into another kind
made use of schemes, the so-called Lie
groups, that were devised to make sense
and order out of the possible rotations of
geometric figures, triangles and hexagons.
(Mathematicians spend their time playing
with triangles and hexagons; physicists
spend their time playing with lambda
hyperons and sigma hyperons.)

In view of this intimacy between physics
and geometry, Hestenes suggests using
Clifford algebra. This is not the place for a
systematic definition of how Clifford
algebra works — although Hestenes gave
one; such a disquisition might well elicit
the response of the schoolboy who began
his book report by saying: “This book told
me more about penguins than I really
wanted to know.”

Hestenes recommends Clifford algebra
because it is an algebra of directions. In
the ordinary algebra learned in high
school, people combine known and un-
known numbers in various ways, by addi-
tion, subtraction, multiplication, etc., to
solve problems. Clifford algebra does the
same sort of manipulation with directions.
Therefore, says Hestenes, it is well qual-
ified to handle the many directed quan-
tities in physics in a very natural way, in-
cluding the complicated ones called
spinors, which other mathematical lan-
guages that have been used cannot han-
dle.

Can physicists handle Clifford algebra?
Will they want to? — Dietrick E. Thomsen
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