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Schrodinger Goes to Monte Carlo

The

adaptive Monte Carlo” method seeks solutions for

chemical and condensed-matter structures

Schr(")dinger‘s equation is basic to an
understanding of atoms and mole-
cules and the structures of liquids and
solids. The equation describes the struc-
ture and behavior of the nucleus and
electrons in an atom. It can be used to
find mathematical descriptions of aggre-
gates of atoms, both chemically elemen-
tal and compounded — provided it can be
solved.

Analytical solutions of the Schroding-
er equation, solutions with full mathe-
matical generality and formalism, are
hard put to go beyond the simpler config-
urations of the proton and electron in a
single hydrogen atom. For more compli-
cated systems involving many bodies,
many atoms or molecules —and in these
cases the many bodies can go to the hun-
dreds or thousands — numerical meth-
ods are necessary.

Getting a numerical solution involves a
large number of trials. For a long time,
the most usual method of arranging the
trials for problems like this, which in-
volve a very large number of objects, has
been the Monte Carlo method, named
with obvious reference to the famous
gambling  resort. However,  the
Schrodinger equation is a quantum me-
chanical equation, and that quality intro-
duces complications that render the
ordinary Monte Carlo method less than
satisfactory.

Chemist Berni Alder and physicists
David M. Ceperley and Edwin L. Pollock,
of the Lawrence Livermore (Calif.) Na-
tional Laboratory, have been working out
a refinement they call quantum Monte
Carlo or adaptive Monte Carlo. With it
they have solved some of the simpler
problems of interest in chemical physics
and physical chemistry and are now
going on toward problems of greater
complexity and interest.

A nalytical solutions use the very gen-
eral procedures of algebra, calculus
and functional analysis to arrive at an
equation into which the numbers rele-
vant to a particular instance of the gen-
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eral problem can be plugged, and then
out comes the number representing the
solution for that instance. On paper at
least, analytical solutions start from the
beginning and proceed logically, step by
step, straightforwardly to the end.

Numerical solutions, on the other
hand, require calculating with numbers
and running trials again and again, an as-
tronomical number of times in many
cases, gradually homingin on the correct
answer. People working on numerical so-
lutions usually have a good idea of the
range in which the wanted answer lies, so
they can play both ends against the mid-
dle. Often they use clues from the struc-
ture of the equation to be solved or from
what they know of the physical situation
itself to tell them whether or not their
trial runs are converging on the solution.

Each of these trials represents a hypo-
thetical change in the situation under
consideration. Suppose the question
concerns a structure involving a number
of atoms and involves finding the ar-
rangement of atoms for which the poten-
tial energy of the system has a certain
value. The potential energy depends on
the locations of the atoms vis-a-vis each
other. The calculation starts with some
plausible arrangement, alters it and then
assesses the effect of the change. One
goes through change after change look-
ing for the optimum configuration. (In
contrast, an analytical solution — if one
existed — would give a formula for cal-
culating the configuration for a given en-
ergy, from which that configuration
could be figured in one pass.)

Doing an infinity of trials would guar-
antee finding the desired configuration,
but life is finite, so the calculation runs a
large number of trials in the hope of com-
ing reasonably near the desired configu-
ration in a practical amount of time. Such
a program needs a good high-speed
computer, but it also needs an appropri-
ate method for selecting the trials.

s Alder stressed in an interview with
SCIENCE NEWS, these are extremely
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multidimensional problems, a quality
that makes them very difficult to vis-
ualize and to calculate. Each atom is ca-
pable of moving in three dimensions, and
eachatom can be positioned more or less
independently of the others, so that each
atom’s three dimensions have to be con-
sidered separately. Thus the total num-
ber of dimensions to be considered
comes to three times the total number of
atoms present.

The full number of dimensions can be
hundreds or thousands. In classical
physics applications, in statistical me-
chanics — that is, the theory of gases — it
can go to three times Avogadro’s number,
the number of atoms in agram-mole of an
element or compound, Alder says.
Avogadro’s number is 6.02 X 1023

In such cases, one of the traditional se-
lection methods for numerical solutions
— throwing a grid across the space and
evaluating at uniform intervals on its
nodes — is “completely impractical
write Alder, Ceperley and Pollock in AC-
COUNTS OF CHEMICAL RESEARCH (Vol. 18, p.
268, 1985). “The key to the success of the
Monte Carlo approach is that it enables a
many-dimensional space to be selec-
tively sampled.”

t was about 30 years ago that Monte

Carlo methods were introduced into
the problem. A Monte Carlo method is a
way of generating a random sequence of
numbers. They can be chosen, for exam-
ple, by some complicated process of
picking digits out of a very long, many-
digit number, perhaps the product of a
complicated sequence of squarings or
factorings, or maybe a transcendental
number — pi, for example, calculated to
hundreds of significant figures. The
Monte Carlo sequence picks a collection
of points in the multidimensional space,
which represent a particular configura-
tion of the atoms, and the potential en-
ergy for this configuration is calculated.
Then another Monte Carlo sequence
picks another configuration, and so on.

This “naive” Monte Carlo method, as
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Alder calls it, proves too cumbersome. It
tests too many hypothetical configura-
tions that are either impossible or man-
ifestly too far from the desired potential
energy. A modification directs the selec-
tion process using what is called an “im-
portance function.” The potential energy
depends on the configuration of the
atoms, because it depends on the forces,
the interaction between atoms. This in-
teraction potential, as they call it, de-
pends on the distances between atoms.
In the classical physics problem, the be-
havior of gases, the interaction potential
is known; it can be derived from the
Boltzmann equation. This interaction po-
tential determines the importance func-
tion used to weight the changes in config-
uration.

What one does, Alder says, is to start
from some plausible configuration, ran-
domly move one particle at a time and
then test that change with the impor-
tance function, which can tell whether
the change is going in the right direction.
If the answer is yes, the calculation
makes the move; if the answer is no, it
rejects it. In this way it gradually con-
verges toward the configuration of the
desired potential energy.

To solve a typical chemical problem to,
say, an accuracy of 1 partin 1,000 requires
1 million to 100 million moves per parti-
cle. For a system of hundreds of particles
this could take an hour’s time on the Cray
computer, Alder says. (One reason for
doing these things at Livermore is that
they have a Cray.)

eaving the classical domain of gases

for the structures of solids, liquids
and molecules, which are governed by
the quantum mechanical Schrédinger
equation, this effort at solutions runs
into two serious problems. First, the im-
portance function is unknown; the
Schrddinger equation doesn't let you cal-
culate the interaction potential as easily
as the Boltzmann equation does. Second,
the quantum statistics that govern the
probabilities of finding atoms or elec-
trons in given locations are more compli-
cated than those in classical statistical
mechanics.

One could insert into the calculation
an interaction potential determined ex-
perimentally, but “this procedure has
large associated errors,” Alder and his
colleagues write in the same ACCOUNTS
OF CHEMICAL RESEARCH article. “There-
fore, it is desirable to develop an accu-
rate technique for calculating, from first
principles, the interaction potential
(that is, the forces acting between the
constituent nuclei and electrons of one
molecule or atom and those of another).”

Finding this interaction potential
would itself be a problem for numerical
solution by these Monte Carlo methods.
What Alder and colleagues have done in
their “adaptive Monte Carlo method” is
to combine the two problems, playing
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the ends against the middle in two ways,
so to speak. Their calculational pro-
cedure weights the configurations it
samples with a guessed importance func-
tion, and it corrects and refines the
guessed importance function as it goes.

The importance function is what math-
ematicians call a probability density. It
tells the probability that a given configu-
ration of nuclei and electrons is, or is
close to, the desired potential energy ar-
rangement. In the quantum mechanical
case, this probability density is not ex-
actly known, so the computational pro-
cedure starts with a trial probability den-
sity that incorporates what is known
about the actual one and a certain config-
uration of nuclei and electrons or of
atoms. As the Monte Carlo moves are
made, what is called a mathematical
branching process is used to correct the
guessed importance function. If a given
move leads to a favorable energy, Alder
says, that means you have underguessed
the probability density for the point in
multidimensional space related to that
move. So you put more energy density
there. If the change is unfavorable, you
have overguessed, and the branching
process throws out that configuration.

Thus, step by step, retaining the good
configurations, destroying the bad ones,
the calculation refines the importance
function to greater and greater exact-
itude. The refined importance function
can then be used to further refine the
particle configurations. Ultimately, Alder
says, quite high accuracies—up to 1 part
in 10 million—can be reached in this way,
adequate for some chemical problems
but not all.

hat Alder calls the “really deep

problem” is related to the feature
of quantum mechanics known as Fermi-
Dirac statistics. The importance function
is a probability density. In quantum me-
chanics that means it is related to the
square of the wave function that accom-
panies every particle. In the way they
build the superstructures ofatoms and in
the way they prevent atoms from collaps-
ing, electrons obey a rule called the Pauli
exclusion principle. The exclusion prin-
ciple forces them to follow the Fermi-Di-
rac statistical law, under which their
wave functions can be positive partof the
time and negative part of the time.

What that means for this calculation is
that there are two populations of elec-
trons that must be kept separate. If they
mix, mathematical “noise” results that
overwhelms the calculation and pre-
vents it from arriving at the desired en-
ergy levels for the given structure. Natu-
rally the two populations will mix,
because the boundary between the
positive and negative domains of the
wave function is not static; it moves
around.

Alder and his colleagues continue to
look for a really elegant solution to this

problem of negative regions in the wave
equation, but they have made a start by
developing a mathematical method for
pinning down the nodes, the boundaries
in the equation that separate positive
and negative regions. Dealing with each
population separately gets an approxi-
mate solution. In this way the calculation
finds out where the nodes are in this mul-
tidimensional space. Then it lets them
slip. They move a little, and as they go,
different points can be assigned to the
plus or minus population. The difference
between the two populations gives a
more accurate solution than simply
freezing the nodes.

It seems that a truly rigorous and ele-
gant solution will be achieved only by
finding a mathematical transformation
that reduces the many-body problemtoa
one-body problem. In such a formulation
each atom, nucleus or electron can be
treated alone with the contributions of all
the others summed together. In Alder’s
opinion such a development will really
allow working on the deep-lying prob-
lems of the quantum-mechanical struc-
ture of matter. Physics has a long history
of reducing many-body problems to one-
or two-body problems in order to find
more powerful solutions, and Alder and
his colleagues have high hopes of doing
it for this one.

pplications started out small and

are proceeding slowly. One problem
Alder and his collaborators have at-
tacked is the structure of hydrogen mole-
cules and whether they persist as hydro-
gen is cooled and pressured into a solid
state. The calculation shows that at abso-
lute zero and low pressure, hydrogenis a
molecular solid made up of the two-atom
molecules characteristic of its gaseous
state, but as the pressure passes 300 gi-
gapascals, hydrogen changes to a mon-
atomic metal in which the atoms are no
longer bound to each other in pairs.

A similar problem involves the interac-
tion between two helium atoms, particu-
larly whether at some low energy level
they can actually be bound together to
form a helium molecule. That question is
still unsolved, but a recent extension of
the group’s work on helium elucidates
certain aspects of the behavior of liquid
helium in its superfluid and its viscous
states.

The group has also been extending its
work to simple molecules and clusters —
for example, the metallic bond between
two lithium atoms, a typical ionic bond
(lithium hydride) and a covalent bond
(water).

Numerical solutions take time. That is
why they were never very popular before
the advent of high-speed computers. An
algorithm for one of these applications
can take a year to work out, Alder says. So
we can expect that this method will move
only gradually through the large number
of problems that lie waiting for it. O
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