WARNING: THIS

SOFTWARE MAY

Software engineers are looking for ways to eliminate
computer program errors that could lead to catastrophe

minor. The Bank of New York’s

computer program for handling
sales of government securities was sup-
posedly designed to cope with up to
36,000 different issues. But a burst of ac-
tivity on one day last November un-
covered a software glitch. Too little com-
puter storage space had been allocated
for keeping track of that many securities.

This error sparked a series of com-
puter problems that corrupted thou-
sands of transaction records. Because
the computer couldn’t promptly pass on
transaction data to the New York Federal
Reserve Bank, the Bank of New York
ended up owing as much as $32 billion. At
the end of the day, it was forced to borrow
about $24 billion — pledging all of its as-
sets — to balance its accounts overnight.

This incident, which took two days to
clear up, cost the Bank of New York mil-
lions of dollars in interest payments. The
securities market was disrupted, and
some investors lost money because of
processing delays. But its greatest im-
pact may have been on federal banking
officials worried about the fragility of
computer systems that handle financial
transactions.

While the Bank of New York case was
the most serious problem yet caused by a
banking computer malfunction, less se-
rious disruptions occur frequently. In
1985, software and equipment problems
delayed end-of-day account settlements
more than 70 times, says E. Gerald Cor-
rigan president of the New York Federal
Reserve Bank. “It is unrealistic to expect
that we will ever achieve a fail-safe pay-

A t first glance, the problem seemed

SEPTEMBER 13, 1986

By IVARS PETERSON

ments system,” he says. Yet without com-
puters, the system couldn’t work as effi-
ciently and economically as it does.

“Like it or not,” says Paul A. Volcker,
Federal Reserve Board chairman, “com-
puters and their software systems —with
the possibility of mechanical or human
failure — are an integral part of the pay-
ments mechanism. The scale and speed
of transactions permit no other ap-
proach” Volcker and Corrigan made
their remarks last December to a House
banking subcommittee investigating the
computer failure.

only place where a computer

failure could have disastrous con-
sequences. Air traffic control systems,
nuclear reactors and chemical plants,
medical technology, defense and aero-
space systems all depend heavily on
computer software to function properly.
The software reliability issue has also
starred in the debate over the feasibility
of the proposed Strategic Defense Initia-
tive (SN:7/14/84,p.26).

“Our health and welfare as individuals
and as a nation are increasingly depend-
ent on the proper functioning of com-
puter systems,” says Herman O. Lubbes
Jr. of the Navy's Space and Naval Warfare
Systems Command in Washington, D.C.
“We have spent little time or effort to as-
sure ourselves that we are taking proper
care in the computer’s use.” Lubbes orga-
nized and chaired a recent conference on
“Computer Assurance” held in Washing-
ton, D.C.

“How can we be sure,” asks Lubbes,

T he U.S. banking system is not the

Science Service, Inc. is collaborating with JSTOR to digitize, preserve, and extend access to
Science News. MIKORS

IEEE

“that vague or incomplete specifications,
design flaws or implementation errors
won't result in systems [that] fail to per-
form when needed or perform incor-
rectly, . . . threatening human life and
welfare?”

The logo for a recent software safety
conference shows one possible
consequence of a software error.

The problem is that errors in large,
complicated computer programs are
practically inevitable (SN:5/14/83,p.312).
John Shore, a research scientist at the
Naval Research Laboratory (NRL) in
Washington, D.C., writes in The Sacher-
torte Algorithm (Viking, 1985): “..the
typical large computer program is con-
siderably more likely to have a major,
crash-resulting flaw than is the typical
car, airplane, or elevator The computer
may be the ultimate machine, but today
it's less trustworthy than many of its
predecessors.”

When designing systems and writing

171

®

WWw.jstor.org

computer software, says David L. Parnas,
a computer scientist at NRL and Queen’s
University in Kingston, Ontario, “we
need to know what we can and can't do.”

oftware engineers try to measure
the quality of software in several

ways. A computer program is con-
sidered “correct” if it always does exactly
what it’s supposed to do; that is, it meets
specifications. Except in simple cases
and by using, for instance, formal mathe-
matical proofs, such perfection is prac-
tically impossible to achieve. Further-
more, although extensive testing may
uncover errors, it doesn’t guarantee that
all of them have been found. And the ini-
tial specifications may themselves be in-

THE PROGRAM IS PROVIDED "AS IS' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. SOME STATES
DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT
APPLY TO YOU. THIS WARRANTY GIVES YOU SPECFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE

that the failures that do occur are of
minor consequence.”

But it’s still a formidable task. Errors
abound.

everal years ago, an error in the
S avionics software for the F-16 jet

fighter instructed the plane to flip
upside down whenever it crossed the
equator. Luckily, a simulation uncovered
the problem before it happened to a pilot
on a mission.

More recently, an F-18's computer,
which controlled the firing of a wing-
mounted missile, performed the func-
tions it was supposed to — opening the
missile rack, firing the missile and then
closing the rack. Unfortunately, the rack

OTHER RIGHTS THAT VARY FROM STATE TO STATE.

IN NO EVENT WILL (NEENEEEP BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST
PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OF CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE SUCH PROGRAM EVEN quHAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES OR FOR ANY CLAIM BY ANY PARTY.

SOME STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL

OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

complete, poorly stated or wrong.

“Reliability” expresses the probability
of an error cropping up when a program
is in use. High reliability means that the
program is unlikely to contain many er-
rors. Again, testing, simulations and long
experience with a program help weed out
defects. Nevertheless, there is always a
chance that something won’t work prop-
erly.

“We often accept systems that are un-
reliable,” says Parnas. But they should be
used only if no possible system failure
can lead to a disaster A writer, for in-
stance, could occasionally afford to lose
an article because of a defect in a word
processing program. It would be incon-
venient but rarely, if ever, life-threaten-
ing. The same could not be said for soft-
ware that controls the firing of a ballistic
missile.

Given that perfection is impossible to
achieve, measures of “trustworthiness”
try to distinguish between errors thatare
minor and those that could lead to cata-
strophic results. The idea is to find and
eliminate the errors that could cause the
greatest harm. In this way, “debugging”
efforts are concentrated where they are
most needed.

“Even if all failures cannot be pre-
vented,” says computer scientist Nancy
G. Leveson of the University of California
at Irvine, “it may be possible to ensure

172

was closed too soon, and the pilot had to
contend with a “live” missile attached to
his aircraft. The plane dropped about
20,000 feet before the pilot regained con-
trol.

In separate incidents, software bugs
were responsible for the death of one pa-
tient and injuries to two others when an
irradiation unit for cancer therapy gener-
ated “inappropriate” doses.

An error in software for evaluating the
effects of earthquakes on nuclear reac-
tors forced the temporary closing of five
power plants that had been constructed
according to the original, flawed com-
puter model.

And the list goes on and on. “Experi-
ence shows that even the most carefully
designed systems may have serious
flaws,” says Peter G. Neumann of SRI In-
ternational in Menlo Park, Calif. “In addi-
tion, human misuse can compromise
even the best systems. We must be ex-
tremely careful in doing anything at all.”
Neumann has documented many “com-
puter-related disasters and other
egregious horrors,” as he puts it, includ-
ing the ones described above, in quar-
terly issues of SOFTWARE ENGINEERING
NorteEs, published by the Association for
Computing Machinery in New York City.

What can be done?

“One option is not to build these sys-
tems or not to use computers to control

them,” suggests Leveson. Alternatives
should be looked at. Designs should in-
clude backup systems. And a given sys-
tem shouldn't rely entirely on software to
control critical functions.

“For the most part, however, this op-
tion is unrealistic,” she admits. “There
are too many good reasons why comput-
ers should be used and too few alter-
natives.”

The experimental X-29 aircraft, for ex-
ample, with its novel swept-forward wing
design, is aerodynamically unstable
(SN:1/8/83,p.26). Only a computer can
make adjustments quickly enough to fly
the airplane. This new jet fighter is now
being tested — very cautiously —and soft-
ware errors are showing up.

Few companies
that develop and
sell computer
software guarantee
that their products
will work without a
hitch. Most include
adisclaimer, like
the one shown, to
warn buyers that
the software
company is not
responsible for any
problems that a
user may
encounter because
oferrorsina
program.

techniques and tools that can be

used to enhance software “safety.”
These attempt to eliminate errors that
could lead to failures resulting in death,
injury, environmental harm, or loss of
equipment and property.

One key element involves imagining
the worst possible consequences of a
system failure, then working backward to
ensure that no possible path through the
software leads to those results. Another
approach is to examine carefully how
well a software package fits in with the
rest of the system it controls. Many, if not
most, serious accidents are caused by
multiple failures, says Leveson, and by
complex, unplanned and unfortunate in-
teractions between components of a sys-
tem.

In one famous example, the first space
shuttle flight was delayed because two
different computer programs, both de-
signed to ensure that the Orbiter could
be flown reliably, were not synchronized.
Considered separately, the programs
worked, but an interface bug prevented
the backup flight software from starting
up at the right time.

Donald I. Good of the University of
Texas at Austin argues that it may be pos-
sible mathematically to prove that com-
puter programs — or at least significant
parts of them — are completely free of

I eveson herself is developing a set of

SCIENCE NEWS, VOL. 130

logical errors. But this would be feasible
only if the time it takes, for instance, to
prove that a piece of software performs
exactly as required for every possible in-
put is short. That means developing au-
tomatic or mechanical theorem-provers
so that much less human labor is re-
quired.

Most of the elements that would go into
such methods are now available, says
Good. Among them is the use of “func-
tional” programming languages, which
make a logical and mathematical ap-
proach easier to implement
(SN:9/24/83,p.202).

Good and his colleagues have devel-
oped several schemes for mechanizing
logic. These have already successfully
proved the correctness of some simple
systems, including one 4,211-line pro-
gram. “We believe that itis quite possible
that the final technology will be able to
produce proved systems with less
human labor than is required to produce
comparable, unproved systems today,’
says Good.

Testing of some kind, however, would
still be needed. What's missing, says
Good, is a basis for formulating precise
statements of what the programmer is
trying to do in the first place. Too often,
software engineers start writing com-
puter “code” before they really under-
stand the problem they are trying to
solve.

“We begin building systems without
really understanding what we're build-
ing,” says Lubbes. “We do a very poor job
of expressing our intentions.”

users, the magic words are now “ar-

tificial intelligence” or “expert sys-
tems.” They suggest that computer pro-
grams that attempt to mimic the way
human experts analyze and solve prob-
lems would also be useful for ensuring
that programs are written correctly or for
testing completed software.

The difficulty, says Shore, is that ex-
pert systems are themselves computer
programs, which may contain flaws. In
fact, trial-and-error methods now used to
build many such systems are extremely
difficultto analyze. Adding a new rule, for
instance, can have quite unpredictable
effects on the way the program responds.
Often, the “correct” behavior itself is a
matter of opinion.

“While expert systems may be more
glamorous than other software,” says
Shore, “they are not more reliable. Like
other large computer programs, expert
systems suffer from the inadequacy of
testing, the curse of flexibility, the exist-
ence of invisible interfaces and other
problems.” The best systems, he says, are
based on precise mathematical methods
that impose consistency and logic.

Good expert systems may turn out to
be helpful for special software-writing
purposes. One such system could be

SEPTEMBER 13, 1986

For some software developers and

Grumman

The X-29 is one example of an aircraft that cannot be flown without a computer. A
computer failure here would probably be disastrous.

used as an assistant to make sure that
specifications are complete. Another
could generate suitable tests. Other ex-
pert systems could perform the inspec-
tions required by the tests — a tedious,
error-filled task for humans.

“But there is no guarantee of total
coverage,” says Stan Letovsky of Yale Uni-
versity. “It just provides a systematic ap-
proach’”

“Human fallibility is a given,” says
Shore. “We must recognize this in soft-
ware engineering.” This means writing
computer programs more carefully so
thatthey are easier to check and easier to
alter when necessary. It means testing
programs again and again in many dif-
ferent ways. It means using the programs
and watching for flaws.

U proach is often overlooked in the

rush to bring software products to
market or by low-bid contractors cutting
corners to meet a deadline or to keep
costs down in military projects. More-
over, although there are many computer
programmers, too few have the skills or
knowledge to develop truly reliable and
trusted software. Perhaps, says Parnas,
people who call themselves software en-
gineers ought to meet some kind of
standard.

“There are a lot of good ideas around,”
says Lubbes. “But research and practice
are still far apart.”

Furthermore, the need to ensure that
software is safe is growing steadily. The
Food and Drug Administration (FDA) is
searching for a way to inspect and regu-
late medical instruments that are run by
computer programs. “We want safety
built into consumer products,” says FDAs
M. Frank Houston. “But checking for
safety must be made less expensive.”

NASA faces a massive task in prepar-

fortunately, this cautious ap-

ing to resume space shuttle flights.
Somehow, NASA engineers must check
millions of lines of computer software to
make sure that there is no “O-ring prob-
lem smoldering in that mountain of soft-
ware,” says William M. Wilson, NASAs
chief engineer.

No one even knows how much shuttle
software is in use altogether. The prob-
lem is made more difficult, says Wilson,
because much of the software was hur-
riedly patched together to meet dead-
lines. It was not designed for ease of test-
ing. “We may also end up with new
software if the shuttle is modified signifi-
cantly” says Wilson. “That would have to
be certified too.”

hat about the future? The next
W decade may see machines with

a million or more processors
working in parallel instead of the single
processor that sits at the heart of most of
today's computers. Individual computer
chips may bear as many as a billion elec-
tronic devices. Light pulses rather than
electronic signals may carry messages.
“These new technologies present new
problems,” says Alfred W. Friend of the
Space and Naval Warfare Systems Com-
mand. The task of ensuring safety will not
get any easier.

“The good news is that computer sys-
tem technology is advancing,” says Neu-
mann. “Given well-defined and reason-
ably modest requirements, good people,
adequate resources and suitably reliable
hardware, systems can be built that sat-
isfy their requirements most of the time.

“The bad news,” he says, “is that com-
pletely guaranteed behavior is intrin-
sically impossible to achieve.”

He concludes that “ .. even if we are
extremely cautious and lucky, we must
anticipate the occurrence of serious ca-
tastrophes in the future.” O

173

