Games

Mathematicians

Play

Mathematical puzzles,

games and other pastimes
both enlighten and amuse

ave you heard the one about an

itinerant entertainer traveling

with a wolf, a goat and a basket of
cabbages? The showman comestoariver
and finds a small boat that holds only
him and one passenger. For obvious rea-
sons, he can't leave the wolf alone with
the goat or the goat with the cabbages.
How does he get his cargo safely to the
other side?

This well-known brainteaser has been
around for centuries. In a version initi-
ated in the 13th century, the puzzle in-
volved three handsome young men who
have three beautiful ladies for wives. All
six are jealous of their spouses. Using a
two-person boat, how many trips does it
take to ferry them all across a river —
without igniting a fit of illicit passion?

Both of these problems and many
othervariations on this theme are simply
ways of dressing up a relatively straight-
forward mathematical problem. Since
the days of the ancient Egyptians and
Babylonians, such devices have often
beenused to turn aroutine mathematical
exercise into something that tickles and
challenges the mind.

Mathematical puzzles and games are
still remarkably popular. Throughout the
world, puzzle addicts snap up many of
the hundreds of such books published
every year. Numerous magazines feature
puzzle columns. Furthermore, the ap-
pearance of a new and ingenious puzzle
can stir up frenzied activity. In three
years, for instance, sales of Rubik’s cubes
exceeded 100 million.

Amusement is one of humankind’s
strongest motivating forces, says mathe-
matician David Singmaster of the Poly-
technic of the South Bank in London,
England. Recreational problems, he
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adds, have spawned many mathematical
fields. The origin of probability theory in
questions about gambling is just one ex-
ample.

Moreover, says Singmaster, an interest-
ing problem is worth hours of lecturing.
“Recreational mathematics offers a
range of problems [that] have fascinated
students for generations and should con-
tinue to do so for future generations.”

Singmaster was one of about 100 peo-
ple, a mixture of professional and ama-
teur mathematicians, who recently spent
a merry week at a conference on recrea-
tional and intuitive mathematics at the
University of Calgary in Alberta. At this
meeting, work was play and play was
work. Puns punctuated lectures. Pen or
pencil scribbles marked progress to-
ward new puzzles or novel solutions for
old ones. Participants wrestled with
numbers, tiles, wooden blocks, counters,
matchsticks, coins, cards and fiendishly
interlocked wire rings.

ven cookies made an appearance.

They play a tantalizing role in a

new game introduced by mathe-
matician James Propp of the University
of California at Berkeley. He describes
the game as follows: Imagine two chil-
dren who take turns stealing cookies
from a larder, each taking a single cookie
every other day. Some of the cookies may
go bad while sitting on the shelf, but for-
tunately each cookie is frosted with its
own expiration date. Once that date is
reached, the children avoid the spoiled
cookie.

“The goal of each of these mean-spir-
ited children,” says Propp, “is . . . to have
the spiteful pleasure of getting the last
cookie” If no cookies spoil during the
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game, the game turns out to be very bor-
ing. The winner’s identity then depends
only on whether the number of cookies is
odd or even. But when some cookies go
bad, the game’s outcome is much less
predictable.

Propp taught his brother how to play
the game and promptly lost to him. “He
played randomly and beat me,” Propp
says. Now Propp is trying to analyze the
game to see if there are strategies that
guarantee a win.

In his analysis, each cookie is repre-
sented by a pile of counters, where a
pile’s height equals the number of days
remaining in the cookie’s life. On any
given turn, the player takes away one of
the piles, and one counter is removed
from all of the remaining piles. The
player who takes away the last pile is the
winner.

Although Propp has uncovered some
interesting patterns that apply to certain
sets of counters, he has not yet found a
general strategy that can be used for any
starting group of cookies. “I have more
than enough data,” he says, “but a lack of
conjectures.”

eiko Harborth of the Technische
Universitat Braunschweig in

West Germany plays with
matches. “Matchsticks are among the
cheapest and simplest objects for
puzzles,” he says. “Whole books have
been devoted to matchstick puzzles.” At
the meeting, to keep his audience fully
occupied, Harborth handed out boxes of
matches to anyone who preferred work-
ing on a puzzle to listening to his lecture.
One group of matchstick (or tooth-
pick) problems involves constructing
patterns in which a given number of
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Figure 1: There’s only one way in which a matchstick can join two points, two ways for matchsticks to connect three points, and
five ways to connect four points. As the number of points increases, the number of possible matchstick patterns escalates rapidly.
Can you find the 50 patterns that join six points?

sticks meet end to end (without crossing
each other) at every point in a geometric
figure on a flat surface. For example, a fig-
ure made up of three sticks laid out as an
equal-sided triangle has two sticks meet-
ing at each corner. This is the smallest
number of sticks that can be used to
create a pattern in which two sticks meet
at every vertex.

The problem is tougher when three
sticks must meet at every corner. The an-
swer requires a figure made up of a mini-
mum of 12 sticks that meet, three at a
time, at eight vertices. Can you find it?

The answer for four sticks meeting at
each vertex isn't known. So far, Harborth
has found an arrangement made up of 104
matchsticks meeting at 52 points (see
cover), but he doesn't know whether this
is the smallest construction that meets
the criteria. It is known, however, that no
such patterns exist for five or more sticks
meeting at each vertex.

Playing with matchsticks raises ques-
tions that come up in the mathematical
field of graph theory — the study of ways
in which points can be connected. Such
graphs often play important roles in cir-
cuit and network design.

Some types of graphs can be explored
using matchsticks. For example, there is
only one way to use a single matchstick to
connect two points. There are two ways,
using two or three matchsticks, to con-
nect three points: The points fallin a line
or a triangle. There are five different
matchstick arrangements that connect
four points, 13 arrangements for con-
necting five points and 50 for connecting
six points (see figure 1). But a general for-
mula for determining the number of pos-
sible arrangements, given any number of
points, hasn't been found.
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There are many similar, unsolved
problems, says Harborth.
M people for thousands of years.
These objects consist of a set of
whole numbers arranged in a square so
that the sum of the numbers in every row,
in every column and along each diagonal
is the same. Some magic squares have
special properties. In ancient China, for
example, a three-by-three square that

agic squares have fascinated

uses all of the digits from one to nine was
said to bring good luck.

Recently, the deciphering of a 5th-cen-
tury inscription written in the runic al-
phabet led to the discovery of a new type
of magic square. It all began with a rare,
19th-century book called The Origin of
Tree Worship, says Lee C.E Sallows of Nij-
megen in The Netherlands. This book de-
scribes the practices of ancient Celtic
priests known as druids and contains a
runic charm that was supposed to have

A math library for fun

A puzzle and games enthusiast could
spend hours browsing through a spe-
cial collection of books and other items
at the University of Calgary library in
Alberta. Devoted to recreational math-
ematics and related pursuits, this col-
lection may eventually become the
world’s definitive source of information
on these topics.

The core of the present collection is a
set of 2,000 items that had been put to-
gether by Eugene Strens, a Dutch engi-
neer, amateur mathematician, friend of
artist M.C. Escher and avid collector.
After Strens died in 1980, Calgary math-
ematician Richard K. Guy was instru-
mental in bringing the complete collec-
tion to the university A fund for
enlarging this unique math library and
a system for receiving donations have
now been instituted to keep the collec-
tion growing.

“The vast amount of material here is
really quite delightful,” says David Sing-
master of the Polytechnic of the South
Bank in London, England. Singmaster,

The
Eugene Strens
Recreational |
Mathematics
Collection

University of Calgary Libraries

who is compiling a comprehensive list
of sources in recreational mathematics,
spent several weeks going through the
Strens collection.

Although the library contains a num-
ber of rare books and many of the major
works in recreational mathematics, one
of the collection’s strengths is all the
minor items it contains. Most libraries
wouldn't consider acquiring many of
the cheaply published puzzle books
and pamphlets that flood the popular
market and then quickly disappear. Yet
these books are useful in filling gaps
between the landmark volumes.

— I Peterson
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Figure 2: The deciphering of this 5th-century runic inscription recently led to the discovery of a new class of magic squares. The
inscription consists of a set of numbers that fill the spaces in a three-by-three square. Each column, row and diagonal adds up to
the same number (45). Remarkably, when the number in each space is replaced by the number of letters in the word for the
number, a new magic square is created — one that uses all the numbers from three to 11. It works in both the original language and
in modern English. The second row illustrates a newly discovered sequence of magic squares in which numbers have twice been
replaced by the number of letters in their names to produce three related, albeit language-dependent, magic squares.

magical properties. Sallows helped
translate the charm into modern English.

The translation revealed that the
charm is actually a three-by-three magic
square. But this one has a remarkable
property. When the number of runic
characters that make up each number in
the original magic squareis writteninthe
appropriate space, the derived numbers
also form a magic square! Moreover, this
second magic square is made up of con-
secutive integers from three to 11. Curi-
ously, the same pattern also works in
modern English (see figure 2).

It was an astonishing discovery, says
Sallows.

This led to a search for other examples
that have the same property, not only in
English but in many other languages. Sal-
lows found that for columns, rows and di-
agonals totaling less than 200, French has
only one such magic square while Eng-
lish has more than seven. Welsh, on the
other hand, has more than 26. For totals
less than 100, he found none in Danish,
sixin Dutch, 13in Finnish and an incredi-
ble 221 in German. He even discovered a
three-by-three English square from
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Figure 3: One set of
tiling problems in-
volves showing
whether any num-
ber of tiles of a
given shape can be
fitted together to
form a rectangle.
Such rectangular
arrangements have
been found for
many tile shapes,
but not for the two
pieces shown. At
the same time, no
one has been able
to prove that it can't
be done.
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which a magic square can be derived,
which in turn yields another magic
square.

The search has now expanded to four-
by-four and five-by-five language-de-
pendent magic squares. Sallows de-
scribes his quest as “a search for ever
more potent magic spells.” An account of
his peregrinations is scheduled to ap-
pear in ABACUS.

iling problems also have a long his-
tory. Evidence that many have been

solved, often in ingenious ways, is
seen in the folk art of many cultures, in
the intricate Moorish mosaic patterns
found at palaces like the Alhambra in
Spain, and in the works of 20th-century
Dutch artist M.C. Escher. But there are
numerous tiling questions that haven't
been settled yet, says Solomon K.
Golomb of the University of Southern
California in Los Angeles.

One problem involves using pieces ofa
given shape to form a rectangle (see fig-
ure 3). With square and rectangular
pieces, the problem is easy to solve. Buta
piece made up of six squares, connected
so that five lie in one row with a sixth at-
tached to the row’s second square, is
much more difficult to deal with. In fact,
no one has yet been able to prove that
tiles of this shape can or cannot be laid
down to form a full rectangle.

Settling the question one way or the
other would be worth a significant prize,
says Golomb. Also unknown is whether a
certain tile made up of seven squares can
be used to form a rectangle.

Another tiling question is related to
the recent discovery of quasicrystals,
which appear to have a nonperiodic
crystal lattice (SN:3/23/85,p.188). Years
before, Roger Penrose, a physicist at Ox-
ford University in England, had dis-
covered a tiling pattern consisting of dia-
mond-shaped tiles, some fat and some
thin, that fitted together to create a pat-
tern that did not repeat itself at regular
intervals.

The open question, says Golomb, is
whether a similar nonperiodic tiling can
be built up from a single type of piece
rather than from the two different types
of pieces found in all known examples.
“Is there a single tile that will do it in a
nonperiodic way?” he asks.

ther geometric recreations dis-

cussed at the meeting included

the art of paper folding (ori-
gami) to create three-dimensional geo-
metric shapes. Thomas Ritchford of
Brooklyn, NY, handed out instructions
for constructing complex star-like figures
from paper without using scissors or
other mechanical aids. Made up of sim-
ple modules fastened together in inge-
nious ways, the completed models hold
together without glue. The constructions
also provide lessons in the geometry of
identical pieces that fit togethertoforma
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Figure 4: The “shoemaker’s knife” or “arbelos” (shaded area in top diagram), first
described centuries ago by Archimedes, has a host of striking geometric properties,
many of which have gone unnoticed for years. Amateur mathematician Leon Bankoff,
for example, discovered a third circle (CQR) equal in size to the long-known twin

circles shown on either side of the line DC.

cube.

Dentist Leon Bankoff of Los Angeles
described the results of many years
spent exploring the “intuition-shatter-
ing” geometric properties of a figure
called the “shoemaker’s knife” (see fig-
ure 4). This geometric figure, first de-
scribed by Archimedes and known to the
ancient Greeks as the arbelos, hasbeena
rich source of curious and unexpected
discoveries for centuries.

One thing that the meeting made clear
was that nonmathematicians can con-
tributeto and participate in mathematics
research. Not all mathematical research
topics dip into arcane notation and

mind-numbing mental gymnastics.

Recreational mathematics, says Sing-
master, is something that a lot of people
can do. The tools are simple — often just
pencil and paper. All it takes is a lot of
patience and persistence. That’s some-
thing that all of the conference partici-
pants seemed to have in common.

But beware. Once a puzzle takes hold,
it demands attention. Daniel Ullman of
George Washington University in Wash-
ington, D.C., remarks on one problem he
wrestled with recently: “I wasted most of
January, February and March on it”

That’s one of the surest signs thatarec-
reational mathematician is at work. OJ
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