Robots With a Lot of Nerve

Eye-hand coordination may
help a robot learn to see

By IVARS PETERSON

an unpredictable environment. It’s

easy enough to program a robot to
pick up an object if the object is exactly
whereit’s supposedto be and is facing the
right way. Similarly, a programmed robot
doesn't have much difficulty moving from
one place to another over a smooth, flat,
unencumbered floor. The trouble comes
when a robot stumbles into unfamiliar
territory. Faced with something not cov-
ered by its instructions, the robot may
suddenly stop as if in a trance, or it may
crash ahead in a drunken fashion, obliv-
ious to its surroundings.

A human being, on the other hand, has
the ability to adapt to new situations and
tolearn from them. This suggests that the
principles of organization built into the
human brain may also be useful for
controlling robots and as models for
“intelligent” computers.

Consequently, a large number of re-
searchers, in both industry and univer-
sities, have been trying to simulate how
the brain’s nerve cells may be intercon-
nected. In their research, these scientists
construct and test mathematical models
of neural networks. They look for ar-
rangements that show a capacity for
storing and retrieving information, rec-
ognizing patterns, understanding every-
day speech and performing other com-
plex tasks (SN: 1/24/87, p.60).

Michael Kuperstein of Wellesley
(Mass.) College has focused on the con-
nection between eye movement and mus-
cleaction, say, in an arm. His studies have
led to the development of a new computer
architecture that permits robots to learn
about their surroundings.

“The architecture is composed of a
number of interacting networks that en-
able robots to develop coordination by
themselves,” says Kuperstein. “These
robots adapt to unforeseen changes in
their mechanics by achieving their own
sense of space. The brain-like architec-
ture will even compensate for partial
damage to itself.”

His two-eyed, one-armed model robot,
consisting of a pair of cameras mounted
on one block and a two-jointed arm
attached toan adjacent block, mimicsina
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Kuperstein’srobot learns to see by relating eye orientation to arm position. Signals from six
actuators controlling each camera are transformed into an input map. The input maps
from both cameras, together with a map conveying stereo information, are then multiplied
by target weights, represented as an array of spines. The result is a new target map, which
defines six arm actuator values used to position the robot'’s arm.

cartoonish way a human’s physiognomy.
Kuperstein presented his results at the
1987 IEEE International Conference on
Robotics and Automation, held recently
in Raleigh, N.C.

important findings from studies of

how the brain processes visual in-
formation (SN:6/28/86,p.408). “I wanted
to study neural network problems from as
much of a biological basis as possible,” he
says. “My approach has developed by
analyzing how biological systems deter-
mine movement control.”

In the 1960s and ’70s, Alan Hein and
Richard Held of the Massachusetts In-
stitute of Technology argued that move-
ment is coordinated with vision. They
showed that kittens that couldn’t see
their limbs and were not allowed to walk
but were carried from place to place
failed to develop the capacity to guide

K uperstein’s work is based on several
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their bodies through space. In contrast,
kittens that could see the results of their
own leg movements were able to navigate
successfully.

Kuperstein extends this result. “My
hypothesis,” he says, “is that we recog-
nize, say, a cup not by its visual registra-
tion on our senses but rather by the
combination of what we see and what we
manipulate. As we move that cup through
space, and we hold it as we move it, so will
our muscles move.”

Moved closer, the cup looks bigger. Its
shape and angles change. But the elbow
joint also moves. The changing visual
image registered on the eye’s retina com-
bines with changing muscle positions
and tensions to produce a stable image in
the mind. Even though the actual image is
changing, a person’s ability to recognize a
cup remains unaffected.

Moving the eye instead of the cup also
changes the image. “In some way,” says
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Kuperstein, “the brain is able to take into
account voluntary movement of our sen-
sory apparatus relative to the world and
to maintain a stable perception of the
world.” That may happen because the
brain correlates image changes with the
action of certain sets of muscles, allowing
itto interpret the effect of eye movements
correctly.

Hence, Kuperstein's chief assumption
is that all objects can be represented by
how they’re manipulated. This provides a
finite vocabulary — essentially muscle
signals — for describing objects.

Kuperstein also uses the experimental
finding that much of the information
entering by way of the eye, ear or some
other sensory organ is generally regis-
tered in particular areas of the brain.
Moreover, that information appears to be
distributed locally across a set of brain
cells in a way that closely resembles the
way in which the information was
gathered. For example, as the eye moves
from side to side, signals go successively
to groups of adjacent or nearby brain
cells.

ately designed to look and act, in a

limited sense, like an animal or a
human being. It consists of two movable
cameras attached to one block and two
coupled limbs, representing an arm with
joints at the shoulder and elbow, attached
to another block. The shoulder joint has
two pairs of “actuators,” representing
shoulder muscles, and the elbow joint
has one pair. These allow the upper limb
to rotate in two directions, and the lower
limb to rotate in one. The stereo camera
“eyes” can move back and forth or up and
down. Each camera is controlled by six
actuators, which shift the camera’s posi-
tion.

This model robot is a descendant of a
single-jointed, one-eyed version that
Kuperstein and mathematician Stephen
Grossberg of Boston University devel-
oped a few years earlier to test the basic
concepts involved in controlling robot
movements. “We felt that if the brain
could solve a behavior in a certain way,”
says Kuperstein, “then probably it would
want to use that solution many times over,
if it could, on other problems.”

At first, the robot knows practically
nothing about the space around it. Its
control system has no a priori informa-
tion about how sight is related to arm
movement, how limb lengths and joint
angles are related to endpoint position
and how actuator signals affect joint
angles. Learning begins when a random
activity generator activates what Kuper-
stein calls a “target map,” which puts the
robot’s arm in various positions. The
robot’s eyes sense where the arm’s end-
point rests, generating an “input map”
that’s related to the angle of gaze of the
eyes. The trick is to correlate what the
robot sees (the input map) with what it

K uperstein’s model robot is deliber-
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In Kuperstein’s architecture, each one of the six limb actuators is represented by an
arrow pointing in a particular direction. These arrows are distributed evenly across the
target map. An input signal activates all the arrows within, say, a circle and modifies the
weights of those elements. Slightly different camera positions send signals to different
parts of the target map. Moving the cameras from left to right, for example, shifts the
input circles from left to right across the target map. The collective output from all active
arrows of a specific type determines the activity of each limb actuator. The rectangular
area shown in the diagram represents one complete set of limb actuators.
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does (the target map).

Once the relationship between camera
angles used to point to a target and the
arm joint angles needed to get to the
target is established, the robot at any
future time knows how to reach any
object that happens to be within its field
of view and causes the same convergence
of its eyes. In other words, says Kupers-
tein, “when the system knows how to see
where it moves, then it can move where it
sees.”

generates an input map —a hilly, graph-

ical landscape not unlike a topographic
map — that corresponds to the position of
the camera and the state of its actuators.
Different camera positions generate dif-
ferent input maps. In addition, the input
maps from the left and right cameras are
combined into a single “disparity” map
that provides stereo information.

All three camera input maps send
signals to a target map, which is made up
of interleaved elements representing the
sixactuatorsin the robot’s two limbs. The
input signals are modified by numerical
weights associated with each element in
the target map. As learning occurs, the
weights change. The output from the
target map generates six numbers that
activate the three sets of “muscles” in the
robot’s arm. These numbers position the
end of the two-jointed arm to the target.

Initially, the target is the endpoint of
the robot’s arm itself. Step by step, the
robot learns to correlate its camera posi-
tions with a randomly specified arm
placement. “It’s actually making mis-
takes,” says Kuperstein, “and learning
from its own mistakes.” Discrepancies
between input and output maps guide
this learning. Later, when the cameras
focus on a particular spot of light located
somewhere in space, the robot should be
able to move its arm to the right location.

“How accurately the arm’s position
reaches the target,” says Kuperstein, “will
depend on how well the target map

In Kuperstein's model, each camera

weights allow the input map signals to be
correlated with the limb-actuator repre-
sentations.” Computer simulations show
that the average error, when target map
ouputs are compared with randomly gen-
erated limb activations, is about 4.3 per-
cent after several thousand trials.

Kuperstein, “the beauty of the
model is that it is adaptable. You
can change the muscle strength or the
actuator strength. You can change the
joint length. You can change the optics of
the eye, the distance between the eyes.
The system will still be able to reorganize
itself and maintain its self-consistency”
At the same time, Kuperstein’s neural
network model interacts with the world
and responds to changes and uncertainty
in the environment. It organizes its own
perception of the world and modifies that
perception as needed.

His model is also fault-tolerant. Be-
cause of the way the target map is orga-
nized as a set of interleaved elements and
the way information is distributed across
these elements, the breakdown of a few
processors causes only a minor change in
the whole network’s output. Moreover,
the system corrects itself — in effect,
circumventing the problem processors.

Kuperstein believes it would be rela-
tively easy to build a robot-control sys-
tem based on his proposed neural archi-
tecture. He has already applied for
patents to cover the basic concepts in-
volved in his network design.

“As I see it,” he says, “the model can be
generalized to other behaviors.” That
includes robot functions such as walking
over uneven terrain or recognizing and
grasping unfamiliar objects.

“The vision I work toward,” he says, “is
that this architecture will be usable in
many different sensory-motor combina-
tions.” The same architecture, in different
contexts or settings, may someday allow
such “neural” robots to learn to see,
touch and hear. a

“From my point of view,” says
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