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Computer Scents

A computer sniffs out how rats
learn to distinguish odors

By STEFI WEISBURD

being greater than the sum of its

parts. And untangling its complex
circuitry in order to decipher how ani-
mals and humans store and recall infor-
mation is a daunting biological task. In
the last few decades, scientists have
made enormous advances in understand-
ing two ends of the learning and memory

T he brain is truly a case of the whole

spectrum: By focusing on molecules and
cells, they have uncovered chemical and
physical changes in individual neurons
thought to be involved in memory; and by
observing psychology and behavior, they
have classified forms of memory and
linked them to different, general regions
of the brain.

But how does one jump from the ac-
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When a rat sniffs an odor, the chemicals in that scent stimulate specific patches of the
olfactory bulb. The activated bulb cells then send a unique pattern of electrical signals
tothe brain. In Lynch and Granger’s computer simulation, each odor is represented as a
bar graph, indicating the patches and number of cells within each patch that have been

stimulated.
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tions of a single neuron to the metropolis
of hundreds of thousands of nerve cells
interacting in myriad brain circuits and
architectures? This is the question that in
the last few years has spurred a remark-
able meeting of minds among neu-
robiologists, psychologists, computer
scientists, physicists and philosophers.

And it has sparked a revival of interest
in computer simulations of the brain’s
neural networks (SN: 8/1/87, p.76) —work
first brought into vogue in the early 1960s.
If scientists cannot directly observe and
dissect memory and learning processes
in biological brains, perhaps silicon ones,
able to handle highly interconnected
webs of processing elements, may help
fill in the gaps, they reason.

However, while they are inspired by the
brain’s learning abilities, most neural
network modelers until now have only
loosely been basing their computer de-
signs on biological data. Though this “top
down” approach may give rise to com-
puter programs that can accurately rec-
ognize voices and faces, among other
tasks, they are of limited use to biologists,
who are attempting to use computers to
answer real neurobiological questions,
such as how the brain learns, remembers
and recalls.

At the third conference on the Neu-
robiology of Learning and Memory,
hosted by the University of California at
Irvine (UCI) last fall, the problem of how
to improve the translation between neu-
robiology and computer models took
center stage. Participants repeatedly re-
marked that computer scientists and biol-
ogists were at last talking the same lan-
guage. And it was evident from most of
the lectures that modelers are in-
creasingly incorporating the results of
neurobiological experiments into their
neural-net simulations.

neural-net model to date is the
brainchild of neurobiologist Gary
Lynch, computer scientist Richard
Granger and their colleagues at UCI, who
have built a simulation of one layer of

P erhaps the most biologically rooted
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neurons, called layer II, in the rat’s pyri-
form, or olfactory, cortex — a brain area
that has been linked to the sorting and
storage of smells. The researchers de-
cided to model the olfactory cortex be-
cause it is one of the anatomically sim-
plest and best-understood regions of the
brain and because it constitutes one of
the shortest routes between memory and
the outside world.

Their work, comments neu-
rophysiologist Howard Eichenbaum at
Wellesley (Mass.) College, “is one of the
very few enterprises ...which really
takes advantage in an extended way of
the known electrophysiology and anat-
omy [of the brain].”

In contrast to most other work, Lynch’s
group took a “bottom up” approach. The
researchers threw together what they
had learned in experiments about the
physiological properties of pyriform neu-
rons and how they interconnect, gave the
computer a set of stimuli representing
odors and, without asking it to solve any
particular problem, simply watched what
the simulation did. And much of what
happened, say the researchers, came as a
complete surprise. The computer orga-
nized information in unexpected ways
and predicted a number of physiological
phenomena, which the researchers have
since confirmed with live rats and pyri-
form slices in the laboratory.

“I have no idea of what the computa-
tional significance of the [biological]
rules [we used] is,” says Lynch. “We just
put them in because they’re in the brain.”
The results, he says, are “mind-blowing.
It's wild stuff.”

ccording to Lynch, most neu-
Arobiologists have been trying to

explain a form of memory that
associates different ideas or objects oc-
curring together. Associative memory
would link, for example, Rome with Italy
or swallows with Capistrano. Lynch and
Granger had anticipated that the pyri-
form-cortex simulation would exhibit as-

sociative memory as well.

But after being presented several times
with a set of aromas — each represented
as an electrical pattern resembling a
supermarket bar code — the computer
began organizing the odors by categoriz-
ing them. This means that instead of
linking Rome with Italy, for example, the
simulation would have grouped Rome
with Los Angeles, Zurich and other cities,
and it would have classified swallows
with parrots, robins and other birds. This
was surprising, says Lynch, because “cat-
egorization is a memory operation that is
not immediately intuitive.”

How does the computer show that it is
categorizing? Lynch and Granger exam-
ined the patterns of neurons that fire in
the simulation after the computer “sniffs”
an odor, and they discovered that the
patterns greatly emphasize the sim-
ilarities among different odors, essen-
tially bringing out the patterns’ underly-
ing and unifying theme.

In one experiment, for example, the
researchers gave the computer a number
of odors whose common properties
would have stimulated the same 60 per-
cent of cells in the rat’s olfactory bulb,
which is the first way station between the
olfactory receptors in the nose, the
pyriform cortex and the rest of the brain.
But after the computer took these inputs
and encoded them within the layer-II
array as specific patterns of firing and
nonfiring neurons, the fraction of shared
neurons rose to 85 percent. After the first
sniff, says Granger, the patterns can be
thought of as members of a category of
somewhat similar odors, like those aris-
ing from different kinds of cheese.

On subsequent sniffs, however, Lynch
and Granger found that the simulation
then began to tease out the differences
between odors. By the third sniff, for
example, only about 20 percent of the
layer-II output cells were shared by en-
codings of different aromas. From the
simulation, the researchers learned that
the cells that are recruited for encoding
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The computer simulation is based on the anatomical arrangement of nerve cells in
“layer II” of the pyriform cortex. A map of how these neurons connect to one
another is shown above. The top four horizontal lines are the pathways along which

the incoming “smells” travel.

28

NEOCORTEX

VISUAL
AUDITORY

HIPPOCAMPUS

\
LAYERIT
LAYERID
() [0oRso-MEDIAL
NUCLEUS

FRONTAL NEOCORTEX

(?response sequences)

Odors are sensed by the receptor sheet in
the nose and then are translated into
electrical signals that travel down a num-
ber of pathways in the mammalian fore-
brain. Lynch and Granger are focusing on
layer Il of the olfactory cortex because it is
extensively connected to the hippocam-
pus and the dorsomedial nucleus of the
thalamus, two structures thought to be
especially important for memory process-
ing.

differences between odors lie farther
downstream from the cells activated dur-
ing the first sniff. And they found that
these downstream cells get their chance
to fire because, once excited, the up-
stream cells are unable to refire for at
least one second, and in that time the rat
has restimulated its cortex neurons by
taking a few additional sniffs. As the
simulation shows, this arrangement en-
ables the brain to identify smells first by
looking at their similarities and then by
highlighting their differences.

ranger says the simulation also
Gillustrates how the brain uses a
specific rhythm of electrical ac-
tivity to orchestrate and synchronize the
many biological events that must come
together in learning. In particular, it
highlights a connection made in recent
years between the sniff rate of rats and
electrical rhythms in the brain. Rats
naturally sniff every 200 milliseconds,
and it appears that this 5-hertz sniff rate
exploits a natural pattern of electrical
signals in the brain, called the theta
rhythm, which has the same 5-hertz
frequency and which is known to be
triggered during learning activities.
Moreover, in other work, Lynch’s group
has found that this same rhythm of
electrical signals is the optimal rhythm
for strengthening connections, or syn-
apses, between nerve cells. And a tenet of
neuroscience this century has been that
memories are encoded as specific pat-
terns of strengthened synapses within
the web of neurons. It’s as if the brain’s
neural network were a fisherman's net,
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with each cross-link representing a syn-
apse that can be fortified by tying a knot
around it; in this picture, every time a
person stores a memory — whether it'’s a
phone number or an odor — it is mapped
onto the net as a particular pattern of
knots.

In preliminary tests of their computer
model, Lynch’s group has found support
for the idea that after learning, specific
brain cells are activated by some odors
but not others. In separate experiments,
the researchers implanted electrodes
into different layer-II cells of live rats that
were learning to discriminate scents. The
rats were given a series of odor pairs,
each containing one scent that led to the
reward of a drink of water and another
scent that led only to a flashing light. The
researchers found that during the first
sniff of a new odor, one monitored cell
fired extensively, but after several sniffs
of a reward-linked odor, the cell became
much quieter, firing in a complex burst
only 200 milliseconds after the odor had
been smelled. After several introduc-
tions to a nonreward odor, the same cell
became inactive, while in other cells, the
opposite was true: These responded to
nonreward odors only. “This strengthens
theargument that these cells are learning
to become odor-specific,” says Granger.

He adds that since the rats are pre-
sented with dozens of different odor pairs
only a few times each — and yet, one
month later, they still remember which
odors correspond to a reward — their
learning is very different from the stand-
ard classical conditioning (which in-
volves hundreds of trials with one pair of
stimuli) studied in most learning experi-
ments. Moreover, the rats in Lynch’s ex-
periments are exhibiting a “kind of learn-
ing that presumably underlies normal
human learning,” he says. Next, the re-
searchers plan to study how one cell
responds to very similar odors. They also
hope to be able to record activity from a
number of cells at once.

robiology has been a data-rich and

theory-poor pursuit. But with the
computer neural net, he says, the wealth
of data begins to give rise to a coherent
picture that wasn’t seen before.

And that picture may extend beyond
the pyriform cortex. In spite of its relative
simplicity, the researchers believe that
biologically based computer simulations
of this region may lead to a deeper
understanding of the much more complex
neocortex. This area—which accounts for
80 percent of the human brain and is
suspected of playing a role in everything
from language processing to spatial tasks
— is thought to have evolved from and
retained many of the features of the more
primitive olfactory region.

As a neurophysiologist who records
electrical signals from single cells,

Traditionally. says Granger, neu-
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These pictures show how the computer encodes odors as it takes a number of sniffs.

The input pattern shown in each screen represents two general groups of eight smells;
the various shades of red could be different cheese aromas, for example, and the blue
scents could be different perfumes. As seen on the large panel of the left screen, most of
the pyriform output neurons active after the computer'’s first sniff respond to either all
the red odors or all blue scents, but are not stimulated by both groups; on the first sniff,
the computer highlights general categories of smells. By the third sniff (right screen),
however, each scent has been assigned a nearly unique output pattern, so the
simulation can now tell the difference between Edam and cheddar.

Eichenbaum expects that Lynch and
Granger’s kind of computer model will be
invaluable to the biosciences. Some sci-
entists have suggested, he says, that the
single-cell approach taken by neu-
rophysiologists is akin to trying to under-
stand how a television works simply by
measuring the voltage of each transistor.
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“We can't take the brain apart,” he says.
“We can follow global connections, ca-
bles, but we can't follow the individual
wires that are so important [in learning
and memory].” With these computer sim-
ulations, however, “we really do for the
first time have a hope of understanding
the circuit diagram in the brain.” O
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