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By IVARS PETERSON

differs somewhat from that of a

sailor or a boy scout. Unlike a
knotted piece of rope, a mathematical
knot has no free ends. Instead, it snakes
through space, finally catching its tail to
form a closed loop.

Yet mathematicians can ask the same
questions about a knotted curve that a
sailor might ask about a knotted rope.
What kind of knot is it? Is the curve (or
rope) really knotted? Can a second knot
undo the first? And the fundamental
problem of knot theory: How can dif-
ferent knots be distinguished?

The last few years have seen a re-
surgence of interest in knot theory, pre-
cipitated by the unexpected discovery of
several new ways of mathematically dis-
tinguishing knots (SN: 10/26/85, p.266).
Mathematicians are beginning to catch
glimpses of what these methods mean
geometrically. Molecular biologists are
using them to understand how DNA
strands can be broken, then recombined
into knotted forms. And a few inves-
tigators are exploring tantalizing, myste-
rious hints of possible links between knot
theory and theoretical physics.

“Right now this is a very exciting area,”
says mathematician Kenneth C. Millett of
the University of California at Santa Bar-
bara. “These are profoundly complicated

T he mathematician’s idea of a knot
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Unknotting
a Tangled Tale

The mathematics of telling
knots apart unravels some of
the twists and turns of molecular
biology and hints at links with
theoretical physics

problems. They represent a very big
mystery. But there is a sense that the
solution to this mystery will contain some
revolutionary new concepts.”

ne way to tell whether a certain
o knot is really the same as a

seemingly different knot, tied in
another closed loop, is to try twisting and
pulling one knot until it matches the
other. If that can be done without cutting
the loop, the two knots must be equiv-
alent. However, failure to turn up a match,
even after hours of fruitless labor, doesn't
prove the two knots are different. Perhaps
the right combination of moves was
somehow overlooked.

Mathematically, the answer is to find a
simple way to pin a label on a given knot
so either two knots with the same label
are equivalent or two knots with different
labels are truly different. In the latter
case, the label would be enough to indi-
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Is this loop truly a knot or can it be
deformed into an unknot, or circle?

j
Science Service, Inc. is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ 2250
Science News. IMNOJN

cate that no amount of twisting, pulling or
pushing would ever transform one knot
into the other. An easily calculated label
would allow knot theorists to tell knots
apart without having to go through the
messy task of tangling with the knots
themselves.

To tackle the problem of classifying and
distinguishing knots, mathematicians
have adopted a set of rules that make
knots more convenient to work with.
Instead of analyzing three-dimensional
knots, they examine two-dimensional
shadows cast by these knots.

This approach is possible because
even the most tangled configuration can
be shown as a continuous loop whose
shadow winds across a flat surface, some-
times crossing over and sometimes
crossing under itself. In drawings of
mathematical knots, tiny breaks in the
lines signify underpasses or overpasses,
while arrows indicate the direction of
travel around a loop.

A loop without any twists or crossings
—in its simplest form, a circle —is called
an unknot. The simplest possible knot is
the overhand or trefoil knot, which is
really just a circle that winds through
itself. In its plainest form, this knot has
three crossings. It also comes in two
forms: left-handed and right-handed
configurations, which are mirror images
of each other.

Only one knot has four crossings, and
two distinct knots have five crossings.
Mathematicians have proven the club
expands rapidly from there to a total of
12,965 identifiable knots with 13 or fewer
crossings, excluding mirror images. Thir-
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teen is the highest number of crossings
for which a complete catalog of knots now
exists. Because knots may also be inter-
twined, like links in a chain, the complex-
ities multiply rapidly.

ne approach to distinguishing
o knots is to use the arrangement of

crossings in a knot diagram to
produce an algebraic formula that serves
as a label for the knot. Such a label, which
stays the same no matter how much a
given knot may be deformed or twisted, is
known as an invariant.

In 1928, John W, Alexander discovered a
systematic procedure for generating such
aformula. Expressed as positive or nega-
tive powers of some variable with integer
coefficients, his simple polynomials for
characterizing and labeling knots — such
as the expression 2 - 3t + 1 —turn out to
be remarkably useful, though not
foolproof.

If two knots have different Alexander
polynomials, then the knots are defi-
nitely not equivalent. For instance, the
trefoil knot carries the label 2 - t + 1,
whereas a figure-8 knot is t* - 3¢ + 1. But
two knots that have the same polynomial
aren't necessarily equivalent. The pro-
cedure doesn't distinguish, for example,
between a knot’s left-handed and right-
handed forms.

It took mathematicians several dec-
ades to understand why the Alexander
polynomials work and which knot prop-
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erties the polynomials capture. In Alex-
ander’s method, only the crossing type —
over or under —and the crossing arrange-
ment make a difference. His formula is the
mathematical equivalent of sys-
tematically snipping the knot’s two
strands at each crossing and refastening
the ends into a simpler arrangement.

In the 1960s, mathematician John H.
Conway, exploiting this new understand-
ing, developed an easier method for
computing any Alexander polynomial.
Conway’s method recognizes that a knot
can be progressively unknotted by
changing selected over and under cross-
ings. Step by step, his unknotting game
leads to an Alexander polynomial.

In 1984, Vaughan E R. Jones of the
University of California at Berkeley unex-
pectedly discovered a connection be-
tween von Neumann algebras — mathe-
matical techniques that play a role in
quantum mechanics — and braid theory.
A mathematical braid can be thought of
as a set of hanging strings that have been
twisted together in some pattern. The top
and bottom ends of such a braid pattern
can be tied together to form a knot.

This chain of reasoning — from physics
to braids to knots — led Jones to the
formulation of a new type of polynomial
invariant. Later, Louis H. Kauffman of the
University of Illinois at Chicago redefined
the Jones polynomial, cutting it loose
from its origins in von Neumann algebras
and expressing it in terms of altered
crossings in knot diagrams. Kauffman

explains his scheme in the March issue of
THE AMERICAN MATHEMATICAL MONTHLY.
J deal of excitement in the mathe-

matical community because his
polynomial invariants detect the dif-
ference between a knot and its mirror
image. Furthermore, it stimulated the
discovery of many more such invariants.
Now, says Joan S. Birman, presently at
Princeton (N.J.) University, “there are
more polynomials than anybody knows
what to do with.”

“It’s like a zoo,” adds Millett. Just as
animals can be put into families that fall
into a kind of evolutionary hierarchy, the
newly discovered invariants reveal sim-
ilar relationships. “They appear to have
certain properties that tie them closely
together,” he says. But some mathemati-
cians fear the simple cases so far investi-
gated may be exceptions to the rule.
Millett and W.B.R. Lickorish of the Univer-
sity of Cambridge in England describe
the most important of the new invariants
in the February MATHEMATICS MAGAZINE.

It seems clear all these invariants are
part of a still larger picture that mathe-
maticians barely glimpse. They know
none of the first 12,965 knots has a
polynomial that equals 1: the polynomial
of the unknot. But they also know present
theories can't distinguish certain classes
of distinct knots.

“For any of the polynomials we have
around at the moment, there are knots
thatare definitely different— proved to be
so by some other method — but that have
the same polynomial,” Kauffman says. On
the other hand, no one has yet found a
knot with a Jones polynomial equal to 1
that can’t be deformed into a circle.

In other words, the Jones polynomial
may turn out to be a detector of knotting.
Computing the Jones polynomial for a
given tangle and finding that the poly-
nomial equals 1 would be a guarantee
that the loop is merely a cleverly dis-
guised circle and contains no knot. How-
ever, mathematicians aren’t yet ready to
bet on this possibility.

ones’ discovery prompted a great

the new polynomial invariants, math-

ematicians experiment by drawing
lots of pictures and using hours and
hours of computer time. They audition
knots, looking for qualities that would
focus attention on what the new invar-
iants reveal and what they hide.

Computing a particular invariant for a
given knot is often quite complicated and
time-consuming. The difficulty is that the
time needed to compute the invariant
goes up exponentially with the number of
crossings. This makes a knot with, say, 40
crossings almost impossible to check,
even by computer. Millett and his col-
leagues have been developing improved

| n attempting to unlock the secrets of
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methods, or algorithms, for computing
the polynomials on both supercomputers
and special-purpose computers.

Like physicists who are trying to make
sense of the particles and forces that
make up the physical world, knot the-
orists are looking for something akin to a
grand unified theory that would explain
all invariants and all knots. They hope
eventually to find a complete invariant
that distinguishes any two knots.

Also missing is the “bus stop” invariant
— a formula so simple that a mathemati-
cian waiting at a bus stop could pick any
knot that springs to mind and quickly
compute whether that particular tangled
mess is really an unknot or a disguised
version of some other familiar knot.

Moreover, no one really understands
what the new invariants mean geo-
metrically. The Jones polynomial appar-
ently encodes many kinds of data about
knots, but in very strange ways. Jones is
now trying to formulate a three-dimen-
sional version of the new invariants that
can be applied directly to a knot in three-
dimensional space rather than to the two-
dimensional diagram produced by the
knot’s shadow.

“Itturns out that this can be done,” says
Jones, “but I haven't quite nailed down
the three-dimensional formula yet.” Such
a formula, from which any of the two-
dimensional invariants could be derived,
would be a significant step toward under-
standing what the invariants mean.

“All these things are in the air” says
Birman. “Somebody’s going to put it
together, but it hasn't been done yet.”

iants — cutting crossings, then

forming new links — bears an un-
canny resemblance to biological proc-
esses in which enzymes break apart
protein strands or DNA molecules, then
recombine them. “If you're asking, as a
knot theorist, the question of what kind of
knots can you get by these recombination
moves, then, in fact, you may well be
asking questions that are relevant to
molecular biology,” Kauffman says.

For example, researchers are applying
knot theory and knot invariants to the
study of DNA configurations during en-
zyme-directed recombination processes.

- Photographs of protein-coated DNA mol-
ecules, taken through an electron micro-
scope, clearly show that DNA strands can
form into loops that are sometimes knot-
ted. But it’s often hard to tell from a
photograph whether a given tangled loop
of DNA is actually knotted or whether one
knotted loop is really the same as an-
other.

“What we used to do was to take a piece
of string and try to make it in the same
shape as we saw by electron microscopy,”
says molecular biologist Nicholas R.
Cozzarelli of the University of California
at Berkeley, “and then, by twisting or

T he procedure for computing invar-
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bending that string, see if we could
deform it into a pattern we had seen in
another case. That worked for simple
cases, but the inability to go from one
state to another didn't prove that the path
doesn't exist. We had to get some help
from the mathematicians.”

By working with invariants such as the
Jones polynomial, Cozzarelli and his
team could mathematically label the
knots they saw in their experiments and
identify knots that were the same. From
this evidence, they could work out the
logical order in which DNA strands are
cut and recombined to produce certain
configurations —tracking the sequence of
steps by which one structure is gradually
transformed into another during the
basic life-supporting processes that take
place within cells. “Instead of manipulat-
ing DNA, you can manipulate equations,”
Cozzarelli says.

Cozzarelli & Wasserman

An electron micrograph of a protein-
coated DNA strand clearly shows the
crossings indicating the strand is knot-
ted. Researchers, by tracing the logic of
DNA recombinations, predicted the ex-
istence of this particular knotted form,
which has six crossings, and subse-
quently found and photographed it.

Such information allows Cozzarelli to
make predictions about the existence of
DNA configurations not yet found. In one
instance, his group predicted that a spe-
cific six-crossing knot must be the next
step in a sequence of molecular reac-
tions. When they went looking for it, they
found the predicted knotted loop. An
account summarizing the work done by
Cozzarelli and his colleagues appears in
the JOURNAL OF MOLECULAR BioLoGY (1987,
Vol.197, pp.585-603).

The problem of classification is now
essentially solved for known DNA knots
and chains, says James H. White of the
University of California at Los Angeles.
“And techniques are available to solve
any additional problem that comes up.”

tions not only in molecular biology

K not theory has potential applica-
but also in physics. In fact, the

mathematical classification of knots
started in the late 19th century when
British scientist Lord Kelvin hypoth-
esized that atoms were knotted vortices
in the ether, an invisible fluid then
thought to fill all space. By classifying
knots, he hoped to organize the known
chemical elements into a periodic table.
Kelvin's atomic theory died, but the
mathematical study of knots survived,
and now researchers are seeing hints of
new links between knot theory and phys-
ics.

“There seem to be fascinating rela-
tionships with physics, and the rela-
tionships are surprising at one level and
perhaps not so surprising at another,”
Kauffman says. For example, knots are
physical to begin with, and knot diagrams
sometimes resemble diagrams physicists
draw to represent interactions between
elementary particles. “You can think of
putting at the crossing of a knot the
mathematics that's related to the interac-
tion of two particles,” he says. A knot
diagram becomes a way of summing up
all the different kinds of interactions that
can take place.

A similar scenario could apply in statis-
tical mechanics — to the behavior of
molecules in a condensing vapor or the
lining up of electron spins when a mate-
rial becomes magnetized. “In a physical
situation, you often have a summation
over alot of differentinteractions thatcan
happen, and the [knot] invariants seem to
be. .. averages over all these different
possibilities,” Kauffman says.

Some mathematicians have also been
using a particular set of equations, some-
times used by physicists in statistical
mechanics, to find new knot invariants.
“There’s something extremely myste-
rious going on,” says Jones. “This purely
mathematical device that physicists use
to solve their models in statistical me-
chanics and field theory is precisely the
thing that generates other [knot] invar-
iants. It's very tempting to try to find out if
this mathematical relationship has any
physical meaning.”

Any possible connections, if they exist
at all beyond mere coincidence, are likely
to be subtle. “The most intriguing aspect
of the whole thing, is that there might be
some kind of duality between field theo-
ries in physics and knot invariants in
mathematics,” Jones says. If that were the
case, then a physicist — to evaluate
whether two apparently different field
theories describing, say, forces between
certain particles, are truly different —
could convert the problem into a question
about knots and knot invariants.

Originally, Jones discovered the first
new invariant by taking a route beginning
in theoretical physics. “It took me a long
time to really believe that there was some
continuing connection with physics,” he
says. “The similar framework looked like
an accident. Now I'm pretty convinced
thattherereally is something goingon.” J
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