Tiling to Infinity

By IVARS PETERSON

mathematics is not unlike the practical

task of covering a floor or wall with
ceramic tiles. Square tiles, for instance,
fall into neat rows and columns to fill an
area of any size. In contrast, tiles in the
shape of pentagons leave gaps that can’t
be filled.

In the mid-1970s, mathematical phys-
icist Roger Penrose of Oxford University
in England found he could assemble tiles
shaped like fat and skinny diamonds into
patterns that fill any area yet don't repeat
themselves at regular intervals. Like pen-
tagons, the resulting tiling patterns have
a fivefold symmetry. Unlike pentagons,
the diamond tiles, when properly placed,
leave no gaps.

Initially just a playful creation, Pen-
rose’s tilings took on added significance
with the unexpected discovery of crys-
talline materials showing evidence of
fivefold symmetry (SN: 3/23/85, p.188).
Penrose’s tilings, with their intriguing
blend of order and disorder, became a
simple geometric model for how groups
of atoms may be arranged within these
novel materials, now known as
quasicrystals.

However, the Penrose model had a
serious flaw. His tiling scheme requires
fitting the diamond tiles together in spe-
cific ways. These matching-edge rules,
indicated by arrows on the tiles (see
diagram), specify which sides and ver-
tices are allowed to meet. But the rules
aren't sufficient to guarantee that any
number of tiles will fit together to create a
flawless pattern. It's easy to place a tile
properly yet run into trouble many moves
later — ending up with a gap that tiles of
neither shape can fill. That makes it hard
to picture how atoms or molecules, influ-
enced largely by their nearest neighbors,
would have enough information to ar-
range themselves into such patternson a
large scale.

This led most physicists interested in
the problem to consider alternative mod-
els for quasicrystalline materials. Many
who studied the Penrose tilings con-
cluded no such rules would be found.

Last year, George Y. Onoda, a ceramics
expert at the IBM Thomas J. Watson
Research Center in Yorktown Heights,
N.Y, took up the challenge. “I didn’t know
that you weren't supposed to be able to do
this,” he says.

Onoda started playing with a pile of
about 200 diamond-shaped tiles. With
practice, he found that, by eye, he could
put together flawless structures using up
all his tiles. He developed a list of em-
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pirical rules for “growing” perfect tilings.
For example, fat tiles always seemed to
end up in chains or rings. Skinny tiles
were by themselves or in pairs.

Onoda demonstrated his scheme to
quasicrystal theorist Paul J. Steinhardt of
the University of Pennsylvania in Phila-
delphia and an IBM colleague, David P
DiVincenzo, who had experience in using
computers to study tilings. Steinhardt
and DiVincenzo helped Onoda convert
his long laundry list of visual rules into a
simple statement about vertices —a cata-
log of the eight ways in which tiles can be
allowed tomeetata vertex (seediagram).
These constraints include but go beyond

Penrose’s original edge rule.

In this scheme, a new tile can be added
to an edge of a given cluster of tiles only if
each shared vertex matches one of the
eight allowed arrangements. Tiles are
placed first wherever there is only one
possible way to complete a vertex not yet
entirely surrounded. Such “forced”
moves can be done in any order. If there
are no forced moves available, then a fat
oraskinny tile, consistent with the vertex
rule, is added to a randomly chosen edge.

“I thought that Onoda’s scheme would
fail if the tiling got big enough,” says
DiVincenzo. “But to our surprise, when
we put it on the computer, itran aslong as
anyone would like.”

Steinhardt and a student, Joshua E.S.
Socolar, now at Harvard University,
worked out a mathematical proof that
these rules, with one exception, are sulffi-
cient to guarantee the creation of perfect
Penrose tilings of any size. The exception
arose when Socolar discovered in his
mathematical proof that with more than
250 tiles —a number much larger than any
computer can handle — a rare combina-
tion of random selections during un-
forced moves could lead to a tiling defect.
That required a small rule change: In an
unforced move, tiles can’t be placed ran-
domly. Instead, a fat tile must be added to
either side of any 108° corner. The rules
and proof appear in the June 20 PHYSICAL
REVIEW LETTERS.

“It was a complete surprise to us that
we ended up with rules that worked
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The surprising solution to a tiling
problem provides new insights into
unusual forms of crystal growth

perfectly” Steinhardt says. “Nobody ex-
pected this. It seemed to be totally coun-
terintuitive.”

The discovery suggests a host of new
mathematical questions and scientific
possibilities. For example, “the results
provide new insights as to how materials
with only short-range atomic interac-
tions can grow large, nearly perfect
quasicrystal grains,” the researchers say.

In ordinary crystal growth, some crys-
tal surfaces are known to have sites that
are “stickier” than others, encouraging
atoms or molecules to settle in those
locations rather than others. Steinhardt
suggests that if any quasicrystalline sys-
tems mimic the kind of growth rules now
known for Penrose tilings, then these
materials may have sticky and nonsticky
sites corresponding to the forced and
unforced moves in the Penrose model.

If that model holds, then the most
common approach for growing
quasicrystals — solidifying the molten
alloy quickly, then slowly heating the
solid to get larger crystals with fewer
defects —is inappropriate. “We should be
trying to do the quenching as slowly as
possible,” says Steinhardt, to give the
atoms more time to find the “sticky”
spots. “You'd like to have a grain isolated
in a liquid to give it a chance to grow.”

Steinhardt and his colleagues also dis-
covered it is possible to build a prac-
tically perfect Penrose tiling if the pattern
starts around a particular kind of defect—
an unfillable void at the pattern’s core.
With such a defect, all moves are forced,
and the tiling pattern proceeds flawlessly
to infinity.

“What that means physically is that if
one of these defects is present, the grow-
ing crystal will always have sticky points
on its surface,” says Steinhardt. “If you
could isolate one of these defects, it
would be a great feature around which to
grow quasicrystals quickly”

The researchers want to generalize
their rules to other tilings with fivefold
symmetry, to tilings with eightfold and
twelvefold symmetries and into three
dimensions. So far, that task has proved
surprisingly difficult.

“We're still at the stage of having to
begin with empirical rules,” Steinhardt
says. “We don't have a firm grasp of what
the essential features are.”

Says DiVincenzo, “I get the feeling that
there’s some branch of mathematics we
need to do this kind of work, but we don’t
know what it is yet.” It’s like working with
compass and straightedge in an age of
computers.
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