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By IVARS PETERSON

ike a detective shadowing his errant
Lquarry, mathematician James A.

Yorke can track the erratic hops of a
chaotic process —carefully checking how
closely each step sticks to a true path.
Such chaotic processes arise whenever
small uncertainties in successive steps in
certain repetitive mathematical pro-
cedures accumulate so rapidly as to de-
stroy any trace of a pattern.

Yorke, who heads the Institute for Phys-
ical Science and Technology at the Uni-
versity of Maryland in College Park,
seeks to understand and tame these cha-
otic processes. His studies start with a
repetitive mathematical procedure that,
on the surface, appears quite straightfor-
ward, even mindless: Calculate the value
of a given mathematical expression, or
function, for some initial value; then
substitute that answer back into the
original expression to get a new value,
and so on. This simple iterative process
often leads to surprisingly complex, un-
predictable mathematical behavior.

The question of predictability is signifi-

In a chaotic process represented by a cer-
tain iterated mathematical expression
(shown above), two neighboring orbits
starting at points differing only in the 14th
decimal place (marked by asterisk) will be
widely separated (shown by lines) after
more than 30 steps, or iterates.
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cant because the iteration of appropriate
mathematical expressions is a standard
method for approximately solving the
equations used to describe the dynam-
ical behavior of materials, fluids and
other physical systems. For example, sci-
entists have developed sets of equations
for modeling atmospheric processes to
predict changes in weather patterns and
climate. Often, they base predictions on
the results generated by iterating equa-
tions thousands of times. How good can
those predictions be if the initial condi-
tions are generally known only to one or
two decimal places and the answers
coming out of a computer may be intrin-
sically uncertain? Similar problems come
up when researchers compute the way a
metal may fracture or how air sweeps
past an airplane wing.

“It’s worthwhile knowing ahead of time
when you can't predict something,” Yorke
says.

A straightforward calculator experi-
ment illustrates what can happen when
iterating even a simple mathematical
expression. Substituting the number 0.2
for x in the expression 4x-x? gives the
answer 0.64. Continuing that process
using successive answers produces a
seemingly haphazard sequence of num-
bers: 0.2, 0.64, 0.922, 0.289, 0.822, 0.586,
0.970, 0.116, 0406, and so on. Though
completely determined by the equation,
the sequence jumps around in an appar-
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ently random fashion.

Further numerical exploration turns
up another surprise. A slightly different
starting value leads to a sequence bear-
ing little resemblance to one initiated by a
near neighbor. A seed value of 0.21, for
instance, produces the sequence of num-
bers: 0.21, 0.664, 0.892, 0.364, 0.926, 0.274,
0.796, 0.650, 0.910, and so on, a far cry from
the sequence starting at 0.2.

The same kind of chaotic behavior
turns up in the iteration of many different
functions. For certain functions, success-
ive points can be plotted on a graph to
produce a two-dimensional cloud of dots.
Chaos specialists refer to the sequence of
plotted points — one dot leading to the
next — as a trajectory, or orbit.

Researchers term such a trajectory
chaotic if it jumps erratically from dot to
dot, never settling down into any kind of
regular pattern. Nevertheless, the mo-
tion tends to stay within a bounded
region, and some neighborhoods may be
visited more often than others. Further-
more, a tiny shift in starting point pro-
duces a very different sequence of dots,
although the overall dot pattern remains
roughly the same.

But computation is intrinsically inex-
act. If a small change in starting point
leads to rapidly diverging results, then
errors made when rounding off numbers
during a computation may also influence
the results. How much does seemingly
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chaotic behavior depend on calculator or
computer inexactitude?

For example, consider a computer
working with numbers to an accuracy of
14 decimal places. Computer experi-
ments show that two neighboring orbits
starting at points differing only in the last
decimal place will look totally unrelated
after a few dozen steps (see illustration).
For some iterated functions, it’s not un-
usual for the distance between orbits to
double at every step.

These results imply that a tiny error in
rounding off at the first step is sufficient to
destroy any attempt at predicting where
the orbit is likely to be after, say, 50
iterates. On top of that, errors occur not
just in the initial conditions but also at
every step.

“This problem faces us because we can
do lots of computation,” Yorke says.

On the positive side, researchers al-
ready have reasons to believe that cha-
otic orbits are more than just numerical
artifacts resulting from computer errors.
“You try different computers, you get the
same pictures,” Yorke says. “You try com-
puting to different [numbers of decimal
places], and you still get the same pic-
tures. The macroscopic features stay the
same. Only the microscopic features
change.”

Yorke and his collaborators Stephen M.
Hammel and Celso Grebogi have found a
way to track the computed sequence of
steps, or trajectory, followed by a chaotic
process to verify that it stays on a “true”
path — a path calculated exactly without
any error. They describe their method in
the October BULLETIN OF THE AMERICAN
MATHEMATICAL SOCIETY.

“We have developed rigorous numer-
ical procedures to prove there exists a
true orbit that stays near the noisy orbit
ofagiven chaotic process for along time,”
the researchers write.

The idea is that while a numerical orbit
will diverge rapidly from the true orbit
with the same initial point, there often
exists a true orbit with a slightly different
initial point that stays near or shadows
the computed (noisy) orbit dot by dot for
a long time — for as many as 10 million
steps if computational errors are no
larger than the 14th decimal place.

“We're making a rigorous determina-
tion of how long a true trajectory stays
near a numerical one,” Yorke says. That’s
done by keeping close tabs on round-off
errors. The computer does all the neces-
sary arithmetic.

As it calculates a trajectory, the com-
puter places a carefully constructed nu-
merical box, within which a true orbit
must lie, around each point. When it
proceeds to the next point in the trajec-
tory, it carries the box in a somewhat
distorted form along with it. If the orig-
inal box and the new box overlap in just
the right way, then at least one true
trajectory stays boxed near the numer-
ical trajectory.
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Depending on the computer’s numer-
ical precision, the boxing scheme can be
extended to at least the first 10 million
steps. Such long shadowing times are
striking when compared to the great rate
at which orbits diverge from each other,
Yorke says.

However, at some point, the computer
encounters a “glitch” at which successive
boxes don't overlap, meaning the true and
computed trajectories start to diverge
significantly. The errors suddenly refuse
to stay neatly boxed. From that point on,
no one can certify that the computed
orbit remains close to a true one.

Yorke and his colleagues proceed on a
case-by-case basis. There is no a priori
guarantee that their boxing, or error-
detection, procedure will work for any
given initial conditions. However, for any
specific trajectory — for a given function
and starting point — the results can be
checked for a certain number of iterates
using Yorke’s method.

For example, Yorke has demonstrated
that a true trajectory passes through
every one of the millions of iterates
producing the array of dots in a figure
known as the lkeda map (see cover
illustration). That figure represents the

results of iterating an equation describ-
ing the electromagnetic field within a
ring-shaped laser cavity.

Yorke is also interested in the statis-
tical behavior of the lkeda map, which
shows that trajectories spend more time
in some regions (shown as brighter
areas) than in others. The trajectory may
stay in the bright regions for several
thousand iterates, then suddenly escape
to the darker halo region for 10 or 20 dots
before being pulled back into the light.
“One of our mathematical objectives is to
try to describe these random escapes,”
Yorke says.

Although Yorke’s work does certify that
for 10 million or more points, specific
chaotic orbits are real rather than merely
numerical artifacts, many questions re-
main. For example, what’s the ultimate
behavior of chaotic trajectories when
there are infinitely many iterates? For a
given function, do different trajectories
always form roughly the same pattern of
dots?

There are many more questions, Yorke
says. Chaos theory is a vigorous and
expanding new field. The most important
questions may be those that have yet to
be asked. O

The first few steps in a chaotic proc-
ess are reasonably predictable. It's only
for many steps or in the long term that
predictability disappears. The reason is
related to the way errors escalate. Cha-
otic processes are associated with
mathematical procedures in which
small errors made at successive steps
accumulate rapidly to destroy any sem-
blance of a pattern. They are also con-
nected with physical systems in which
small uncertainties in initial conditions
lead to large deviations in long-term
behavior.

Consider the following simple mathe-
matical procedure. Start with a number
less than 1, then keep doubling it. Every
time the answer is greater than 1, lop off
the 1 and retain only the decimal or
fractional part of the number.

For example, if the starting number is
3, the sequence goes: %5, %5, 43 (which,
according to the rules, would be rewrit-
ten as 13), 23, and so on. The sequence
has a definite repeating pattern.

Now suppose that the computer or
calculator can’t handle fractions such as
/3. All such numbers must be expressed
approximately as decimals rounded off
to a certain number of places. Thus, the
fraction '3 may be expressed as 0.33.
Then the sequence becomes: 0.33, 0.66,
1.32 (rewritten as .32), 0.64, 0.28, 0.56,
0.12, 0.24, 048, 0.96, and so on. The
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sequence no longer has a regular re-
peating pattern.

Increasing the precision to three dec-
imal places produces the sequence:
0.333, 0.666, 0.332, 0.664, 0.328, 0.656,
0.312,0.624, 0.248, and so on. By the ninth
step, the sequence has again diverged
significantly. Increasing the precision to
a larger number of decimal places
doesn’t help very much; the errors
accumulate too rapidly.

An error or uncertainty of 3 parts in
1,000 is not uncommon in making meas-
urements or computing the behavior of
physical systems. Imagine, for example,
abilliard table studded with large cylin-
drical bumpers in a regular pattern. In
this situation, each bounce magnifies
any uncertainties in the ball’s initial
position and speed. The errors propa-
gate so rapidly that anyone attempting
to predict the ball’s position after the
first few bounces, based on the table’s
geometry and the ball’s incoming velo-
city, would fail. Such a model could
apply to the way neutrons scatter from
materials or the way atoms bounce
around inside a container.

“Small errors in knowledge can grow
exponentially with time, making long-
term prediction of the future impossi-
ble,” Yorke says. “Chaos is predictability
inthe short run but notin thelongrun.”

— I. Peterson
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