Inside Moves

A new look at the mathematical problem
of turning a sphere inside out

By IVARS PETERSON

out means releasing the air, revers-

ing the ball’s surface by pulling it
through the opening, pumping in more
air and finally resealing the ball. But a
mathematical sphere has no orifice. Turn-
ing it inside out, without tearing or cut-
ting it open, seems intuitively impossible.

Mathematicians, however, play such
mental games by their own rules. If it
were possible to push a surface through
itself, meaning that two points on the
surface could temporarily occupy the
same point in space, then a solution
might exist to the problem of reversing, or
everting, a sphere’s surface. The trick is
performing the entire eversion without
letting a crease enter the picture.

Thirty years ago, Stephen Smale, now
at the University of California, Berkeley,
proved it is possible to turn a sphere
inside out, but he provided no simple way
of visualizing the procedure. A number of
mathematicians have since pictured the
transformation, and they continue to
look for simpler, more efficient means of
describing and displaying how the
change occurs.

“It’s a problem that captures the imag-
ination,” says mathematician Anthony
Phillips of the State University of New
York at Stony Brook. “It’s a fairly easy
problem to explain. It’s something that
somehow should be very simple to do but
is really very complicated.”

Now French mathematician Bernard
Morin of the Université Louis-Pasteur in
Strasbourg has found the simplest possi-
ble route for a sphere eversion. “I just
need to follow the positions of 12 points,”
Morin says. The coordinates of those
points throughout the transformation
provide all the information a mathemati-
cian needs to understand the eversion.

This exercise falls within the mathe-
matical field known as topology, which
concerns the fundamental properties of
shapes. By studying the steps required to
transform one shape into another, topo-
logists establish relationships between
different shapes and learn the key dif-
ferences distinguishing one shape from
another. Such abstract notions play an
increasingly important role in many dis-
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ciplines outside of mathematics, from
molecular biology (SN: 11/12/88, p.319) to
particle physics and cosmology (SN:
3/18/89, p.174).

matical problem of everting a sphere

without allowing creases can't be
solved. Imagine a sphere painted blue on
the outside and red on the inside. Pushing
the north and south poles toward the
sphere’s center, then past each other,
forces the original inner surface to pro-
trude more and more. The transformed
object begins to look like a red sphere
with a blue tube running around its
equator. Gradually the blue tube (the
remaining portion of the outside) be-
comes thinner and thinner until it van-
ishes. That leaves a sphere with a red
outside and a tight loop that must be
pulled through itself. That produces a
sharp crease, which isn’t allowed.

In 1959, Smale, then a graduate student,
proved an abstract theorem that indi-
rectly leads to the proposition making
sphere eversions possible. The result so
surprised his thesis adviser, Raoul H.
Bott, now at Harvard University, that
Bott insisted Smale had to have made a
mistake.

But the logic of Smale’s proof held up.
In fact, his proof laid out a step-by-step
path for accomplishing a sphere eversion,
but in such a complicated argument that
no one could visualize his procedure.
Thus, for some time after Smale’s discov-
ery, mathematicians knew that turning a
sphere inside out was possible, yet noone
had the slightest idea how to do it.

Eventually, a number of mathemati-
cians, including Phillips and Morin, de-
vised workable sphere-eversion schemes
involving complex sets of moves that
stretch, pinch and twist the surface
through the crucial stages during the
transformation. Morin’s latest effort re-
duces the problem to following the coor-
dinates of 12 points on a sphere — making
a sphere, for the purposes of this prob-
lem, equivalent to a polyhedron with 12
corners, or vertices.

Intuition suggests that the mathe-
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This computer-generated picture, con-
structed from about 12,000 polygons,
represents one stage in the polyhedral
sphere eversion worked out by mathe-
matician John Hughes.

Morin starts with a cuboctahedron,
which looks like a cube with its corners
lopped off. This polyhedron has 12 ver-
tices and 14 faces (six squares and eight
equilateral triangles). By using a se-
quence of elementary moves (moving a
vertex along an edge), Morin transforms
the cuboctahedron into a curiously
shaped figure, which he calls the “central
model,” with only 12 faces but the same
number of vertices as before. Four of its
faces are nonconvex pentagons, which
look like notched quadrilaterals. The rest
are triangles.

A sequence of six elementary moves
carries the central model through the
tricky stages of the eversion. A final
flurry of moves produces an octahedron
again, now turned inside out.

Morin’s achievement is remarkable on
several counts. In his history of sphere
eversions in A Topological Picturebook
(Springer-Verlag, New York, 1987), mathe-
matician George K. Francis of the Univer-
sity of Illinois at Urbana-Champaign
writes: “Bernard Morin is not distracted,
like the rest of us, by pencil and paper and
the business of drawing and looking at
pictures. He is blind. With superb spatial
imagination, he assembles complicated
homotopies [transformations] of sur-
faces directly in space. He keeps track of
temporal changes in the double curves
and the surface patches spanning them.
His instructions to the artist consist of a
vivid description of the model in his
mind.”

Morin’s polyhedral model of a sphere
eversion makes it easier to keep track of
where all the pieces of a surface are going
during a transformation. “This way, you
can intellectually throw away a lot of the
complications and just focus on the es-
sential parts,” Phillips says.

“If you start with the 12 vertices of a
cuboctahedron, you see many phenome-
na,” Morin adds. “You are forced to see
the twists. You see that you have to
contract enormously certain things and
elongate enormously other things.”
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Ithough Morin’s version is the sim-

plest possible polyhedral model of

a sphere eversion, it isn't the first.
Last year, John E Hughes of Brown Uni-
versity in Providence, R.l., created a
polyhedral model with a larger number of
vertices in an effort to find a set of
equations he could use to program a
computer to perform and display a com-
plete sphere eversion.

Hughes’ approach to finding an explicit
formula was to build up a given surface
from small patches already defined by
specific mathematical expressions. It's a
process akin to sewing together a patch-
work quilt. Mathematically, the idea is to
piece together algebraic expressions
known as polynomial functions, each
defining a small piece of surface, adding
them together and making sure the
patches meet smoothly.

Hughes has used his equations to pro-
duce an animated film that vividly dem-
onstrates a sphere eversion. He's now
working on an alternative model in which
all the steps of a sphere eversion appear
as different slices through a particular
surface in four-dimensional space.

“In some sense, because it's an attempt
to visualize a fairly abstract thing, the
sphere-eversion problem is a never-end-
ing quest,” Francis says. “There’s always
something left to be done in the visuali-
zation part.” O
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