tartling scenes of rippling pave-
S ment, featured in a classic film that

captured the 1940 destruction of
the Tacoma Narrows suspension bridge
in Washington state, rank among the most
dramatic and widely known images in
science and engineering. This old film, a
staple of most elementary physics
courses, has left an indelible impression
on countless students over the years.

Many of those students also remember
the standard explanation for the disaster.
Both textbooks and instructors usually
attribute the bridge’s collapse to the
phenomenon of resonance. Like a mass
hanging from a spring, a suspension
bridge oscillates at a natural frequency. In
the case of the Tacoma Narrows bridge,
so the explanation goes, the wind blow-
ing past the bridge generated a train of
vortices that produced a fluctuating force
in tune with the bridge's natural fre-
quency, steadily increasing the amplitude
of its oscillations until the bridge finally
failed.

“This explanation has enormous ap-
peal in the mathematical and scientific
community.” observes applied mathema-
tician P Joseph McKenna of the Univer-
sity of Connecticut in Storrs. “It is plaus-
ible, remarkably easy to understand, and

Photo above: On Nov. 7, 1940, gusting
winds induced twisting motions in the
Tacoma Narrows suspension bridge,
causing its collapse only four months
after the bridge had been opened to
traffic.
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makes a nice example in a differential-
equations class.”

But the explanation is flawed, he says.

Resonance is actually a very precise
phenomenon. Anyone who has seen
sound waves shatter glass knows how
closely the forcing frequency must match
an object’s natural frequency. It's hard to
imagine that such precise, steady condi-
tions existed during the powerful storm
that hit the bridge, McKenna says.

Furthermore, the structure displayed a
number of different types of oscillations.
Initially, its roadway merely undulated
vertically. Then the bridge abruptly
switched its oscillation mode, and the
roadway started to twist. It was this
extreme twisting that actually led to the
bridge’s demise.

Indeed, even the 1941 report of the
commission that investigated the disas-
ter concludes: “It is very improbable that
resonance with alternating vortices plays
an important role in the oscillations of

suspension bridges.”
I Tacoma Narrows destruction, what
does? Fascinated by that question,
McKenna and Alan C. Lazer of the Univer-
sity of Miami in Coral Gables, Fla., have
spent the last six years developing an
alternative mathematical model that may
help elucidate the catastrophic collapse.
“What distinguishes suspension
bridges, we claim, is their fundamental
nonlinearity,” Lazer and McKenna state in
a paper to appear in a forthcoming SIAM

f simple resonance doesn’t explain the
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A new analysis challenges
the common explanation
for a famous collapse

By IVARS PETERSON

REVIEW.

Linear differential equations, such as
those typically used by engineers to
model the behavior of structures such as
bridges, embody the idea that a small
force leads to a small effect and a large
force leads to a large effect. Nonlinear
differential equations, such as those
studied by Lazer and McKenna, have
more complicated solutions. Often, a
small force can lead to either a small
effect or a large effect. And exactly what
happens in a given situation may be quite
unpredictable.

Lazer and McKenna say their new
theory provides key insights into why
suspension bridges oscillate the way they
do. It applies not only to the Tacoma
Narrows bridge and San Francisco’s
Golden Gate bridge —which may be prone
to large-scale, potentially destructive os-
cillations during earthquakes — but also
to large, flexible structures, such as space
stations, giant space-based robot arms
and certain types of ships. The theory
even suggests ways of constructing ex-
tremely light, flexible bridges that won't

oscillate wildly.
S tory of large-scale oscillations and

catastrophic failure under high and
even moderate winds. The earliest re-
corded problem involved a 260-foot-long
footbridge constructed in 1817 across the
River Tweed in Scotland. A gale de-
stroyed that bridge six months after its
completion.

uspension bridges have a long his-
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In 1854, winds completely destroyed
the roadway of a 1010-foot suspension
bridge across the Ohio River at Wheeling,
W. Va. An eyewitness wrote that the
structure lunged like a ship in a storm,
finally crashing into the waters below.

There are a number of other examples.
In some cases, the bridges didn’t actually
shake themselves to pieces, but the oscil-
lations grew large enough that a traveler
crossing the bridge would get seasick.

What distinguished the design of the
Tacoma Narrows bridge from its prede-
cessors was the extreme flexibility of its
narrow, thin, two-lane roadbed. Unfor-
tunately, this graceful, streamlined de-
sign gave the bridge a pronounced ten-
dency to oscillate vertically under widely
varying wind conditions. Even before its
completion, several workers had felt sea-
sick as a result of its motion. Later, thrill-
seeking motorists would come just for the
novelty of driving over “Galloping Ger-
tie’s” undulating surface.

Engineers tried to correct the problem
but failed. Then, early in the morning of
Now. 7, 1940, with a stiff breeze blowing at
roughly 40 miles per hour, the undula-
tions became more serious. Officials
closed the bridge at 10 a.m. —just before it
began twisting itself to pieces.

L mathematical explanation for the

Tacoma Narrows disaster must iso-
late the factors that make suspension
bridges prone to large-scale oscillations;
show how a bridge could go into large
oscillations as the result of a single gust
and at other times remain motionless
even in high winds; and demonstrate how
large vertical oscillations could rapidly
change to a twisting motion.

One significant clue lies in the behavior
of the vertical strands of wire, or stays,
connecting the roadbed to a bridge’s
main cable, McKenna says. Normally,
those stays would remain in tension
under a bridge’s weight. Civil engineers

azer and McKenna say a complete

A heavier, stiffer bridge (right) replaced
the original Tacoma Narrows bridge
(left).
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The main ingredients for a one-dimensional model of a suspension bridge.

usually assume that the stays always
remain in tension, in effect acting as rigid
rods. That allows engineers to use rela-
tively simple, linear differential equa-
tions to model the bridge’s behavior.

However, when a bridge starts to oscil-
late, those stays begin alternately loosen-
ing and tightening. That produces a non-
linear effect, changing the nature of the
forces acting on the bridge. When the
stays are loose, they exert no force, and
only gravity acts on the roadbed. When
the stays are tight, they pull on the
bridge, countering the effect of gravity.

The nonlinear differential equations
that correspond to such an asymmetric
situation have much less predictable so-
lutions. “Linear theory says that if you
stay away from resonance, then in order
to create a large motion, you need a large
push,” McKenna says. Nonlinear theory
says that for a wide range of initial condi-
tions, a given push can produce either
small or large oscillations.

“You can think of it as being between
two peaks on a mountaintop,” McKenna
explains. “You might slide down one side
and end up in a small-amplitude solution,
but you might equally well slide down the
other side and end up on a large-ampli-
tude solution.”

According to nonlinear theory, a sus-
pension bridge can respond to a whole
range of forcing frequencies. “It's the
opposite of saying that the [forcing]
frequency has to match exactly the
[bridge’s] natural oscillation,” McKenna

says.

He and Lazer also find that their non-
linear equations yield mathematical so-
lutions corresponding to waves traveling
up and down a bridge'’s roadbed. On
several occasions, the Golden Gate
bridge has exhibited traveling waves that
start at one end and ripple along the
pavement to the other end. In one inci-
dent on a windy day in 1938, the bridge’s
chief engineer reported observing a clus-
ter of ripples traveling down the roadway
—a wave-like motion similar to the crack-

ing of a whip.
S modeled after 1940, including the

Golden Gate, are unlikely to suffer
the same stormy fate as the Tacoma
Narrows bridge. Civil engineers re-
sponded to the Tacoma disaster by
stiffening existing bridges and building
new bridges heavy and rigid enough to
resist wind-induced motion. In fact, the
structure replacing the original Tacoma
Narrows bridge has a much heavier, four-
lane roadway. Because such bridges natu-
rally flex very little, a linear analysis
suffices. Only when flexibility becomes
an issue and a bridge moves so much that
its stays start loosening does the non-
linear theory come into play.

“So long as you build a big, heavy, rigid
bridge, it's not going to get into the range
where the cables are slackening without
an incredible input of energy,” McKenna

uspension bridges built or re-
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says. “If you don't get into the large
oscillations, then you will never see any
of this nonlinear behavior.”

There is, however, one possible energy
source that could send such a bridge into
large-scale oscillations. “An earthquake
is precisely the sort of energy source that
will put you into the nonlinear mode,”
McKenna says.

Last fall, the Golden Gate bridge went
into large-scale oscillations during the
magnitude 7.1 Loma Prieta earthquake.
The bridge oscillated for about a minute,
roughly four times longer than the earth-
quake itself lasted. One witness noted
that the stays connecting the roadbed to
the main cables were alternately slacken-
ing and tightening “like strands of spa-
ghetti” — a sign that the bridge was in a
nonlinear state. Fortunately, the bridge
didn't start twisting, perhaps because the
earthquake waves hit it head-on rather
than obliquely, McKenna says.

L they don't yet have a complete,

realistic mathematical model of
suspension-bridge behavior. For exam-
ple, their current model doesn't take into
account the natural frequencies of the
towers supporting the main cables or the
main cables themselves, which also vi-
brate to some degree. And they haven't
satisfactorily answered the question of
where the twisting comes from, although
their model provides some hints.

“However, if [our] simple model ex-
hibits unexpected, complex oscillatory
behavior, then one can reasonably expect
a more accurate model to do so,” Lazer
and McKenna say.

According to their simple model, gusts
of wind initially act as a random buffeting
force on a suspension bridge, causing the
towers and main cable to go into a high-
frequency periodic motion like that of a
randomly struck guitar string. That mo-
tion initiates low-frequency, vertical os-
cillations that ripple the roadbed.

The sudden transition from vertical
oscillations to a twisting mode is more
difficult to explain. Using computer sim-
ulations, McKenna has shown that a rod
suspended from cables that behave non-
linearly can unexpectedly start twisting.
Analyses of more realistic models should
bear this out, he says.

“This, we feel, is the likely explanation
of the destruction of the Tacoma Narrows
bridge,” Lazer and McKenna conclude.
“An impact, due either to an unusually
strong gust of wind, or to a minor struc-
tural failure, provided sufficient energy
to send the bridge from one-dimensional
to torsional [modes of oscillation].” The
resulting twisting destroyed the bridge.

he nonlinear theory also suggests
an intriguing new design for light-

weight, inexpensive suspension

azer and McKenna emphasize that
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Under-cables to counterbalance
the nonlinear effects of the

A bridge equipped with cables above and below the roadbed may be less prone to
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bridges. In conventional suspension
bridges, nothing keeps a stay from slack-
ening during an oscillation. One possible
answer is the installation of two sets of
stays and cables: one set from which the
roadway hangs and a second set that
pulls down on the roadway from below.
That modification would make the forces
acting on the bridge more symmetric and
less nonlinear.

“The mathematics predicts that this
should work,” McKenna says. Such a
bridge would be less likely to oscillate
wildly.

A suspension bridge built in 1850
across the Niagara River gorge provides a
historical precedent for the efficacy of tie-
down cables. Originally, the bridge was
stabilized by a set of cables running from
the roadway to the sides of the gorge. The
structure survived without incident until
the spring of 1864, when engineers tem-
porarily removed the cables to keep them
from snaring chunks of ice from the
breakup of an unusually heavy ice jam. A
heavy wind destroyed the bridge before
the cables could be restored.

N influencing suspension bridges

also arise in flexible ships, espe-
cially when they’re lightly loaded and
ride high in the water. In a storm, waves
can lift much of the ship out of the water.
At that point, its behavior becomes non-
linear, and subsequent wave action can
cause the entire ship to oscillate.

“Most ships probably won't go into this
mode because theyre very large and
extremely rigid,” McKenna says.

Nevertheless, nonlinear theory may
explain a number of marine disasters,
including the famous case of the Edmund
Fitzgerald, which mysteriously sank in a
storm on Lake Superior in November
1975. As a Great Lakes carrier, the vessel
had considerably more flexibility than an
oceangoing freighter. One explanation for
the tragedy holds that the Edmund
Fitzgerald dove into a “wall of water” and

onlinear effects similar to those

never recovered. Lazer and McKenna
speculate instead that the ship sank after
it went into a large-scale flexing motion.

“This would also account for one of the
most puzzling aspects of the case, namely
why the ship was broken not at its mid-
point but at two points approximately 80
feet from the midpoint,” Lazer and
McKenna say. That’s precisely what
would happen if the vessel oscillated in
one of the modes that appears as a
solution of the simple nonlinear equation
they use to model ship behavior.

The extremely light, large, flexible
structures now on the drawing board for
space applications pose even more se-
rious problems. “If we can't even do it for
a suspension bridge yet, [the designers]
are going to have a great deal of difficulty
predicting the nonlinear oscillations
they’re going to get in these structures,”
McKenna says.

xplorations of nonlinear theory re-
E quire extensive use of computers.

“What's happening now is that we
can look at a very simple mechanics
problem, like a rod suspended at both
ends by nonlinear elastic cables, and we
can search for interesting behavior on the
computer,” McKenna says. “When we find
it, we can make predictions and prove
theorems that would never have oc-
curred to us before.”

Step by step, that process leads to more
realistic models of suspension bridges
and other structures. “We start with some
abstract results [theorems],” McKenna
and Lazer write in their paper. “These
results in turn are confirmed by the
numerical calculations, which suggest
both new theorems and new applications
of engineering interest. Finally, these
results make suggestions about how
large structures should be constructed,
or how ships should be handled at sea.”

“Five years from now, I would like to
have a complete model of a suspension
bridge,” McKenna says. “But that's going
to be a big job.” |
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