— e
| =2

S itting 70 kilometers east of Toronto

on the shore of Lake Ontario, the

Darlington Nuclear Generating
Station looks much like any other large
nuclear power plant of the Canadian
variety. But behind its ordinary exterior
lies an unusual design feature.

Darlington is the first Canadian nuclear
station to use computers to operate the
two emergency shutdown systems that
safeguard each of its four reactors. In
both shutdown systems, a computer pro-
gram replaces an array of electrically
operated mechanical devices — switches
and relays — designed to respond to
sensors monitoring conditions critical to
a reactor’s safe operation, such as water
levels in boilers.

When completed in 1992, Darlington’s
four reactors will supply enough electric-
ity to serve a city of 2 million people. Its
Toronto-based builder, Ontario Hydro,
opted for sophisticated software rather
than old-fashioned hardware in the belief
that a computer-operated shutdown sys-
tem would be more economical, flexible,
reliable and safe than one under mechan-
ical control.

But that approach carried unantici-
pated costs. To satisfy regulators that the
shutdown software would function as
advertised, Ontario Hydro engineers had
to go through a frustrating but essential
checking process that required nearly
three years of extra effort.

“There are lots of examples where
software has gone wrong with serious
consequences,” says engineer Glenn H.
Archinoff of Ontario Hydro. “If you want a
shutdown system to work when you need
it, you have to have a high level of
assurance.”

The Darlington experience demon-
strates the tremendous effort involved in
establishing the correctness of even rela-
tively short and straightforward com-
puter programs. The 10,000 “lines” of
instructions, or code, required for each
shutdown system pale in comparison
with the 100,000 lines that constitute a
typical word-processing program or the
millions of lines needed to operate a long-
distance telephone network or a space
shuttle.

Computer programs rank among the
most complex products ever devised by
humankind, says computer scientist
David L. Parnas of Queen’s University in

104

Finding Fault
The formidable task of
eradicating software bugs

By IVARS PETERSON

Kingston, Ontario. “They are also among
the least trustworthy,” he contends.

“These two facts are clearly related,”
says Parnas. “Errors in software are not
caused by a fundamental lack of knowl-
edge on our part. In principle, we know all
there is to know about the effect of each
instruction that is executed. Software
errors are blunders caused by our inabil-
ity to fully understand the intricacies of
these complex products.”

ractically no one expects a com-

puter system to work the way it

should the first time out. “A new
chair collapses, and we're surprised,”
Parnas says. In contrast, “we accept as
normal that when a computer system is
first installed, it will fail frequently and
will only become reliable after a long
sequence of revisions.”

But there are many situations where
that kind of performance is unacceptable.
Computers that fly military or civilian
aircraft, operate medical devices, man-
age transportation systems and perform
crucial safety functions such as air-traffic
control must work without fail.

As computer-controlled systems in-
crease in complexity and become ever
more deeply embedded in the fabric of
society, the potential for costly failures
rises. Indeed, some computer experts
fear that we are courting disaster by
placing too much trust in computers to
handle complexities that no one fully
understands.

Last November, the Association for
Computing Machinery sponsored a meet-
ing in Arlington, Va., on the issue of
managing complexity — finding ways to
build computer systems that are both
large and trustworthy. “There are tons of
issues out there,” says Harold S. Stone of
the IBM Thomas J. Watson Research
Center in Yorktown Heights, N.Y. “This is
one we can't get our finger on. We don’t
have the answer.”

Companies throughout the computer
and communications industries, includ-
ing giants such as IBM and AT&T, are
having great difficulties developing the
next generation of computer products,
Stone adds. “We need to go to the next
[higher] plateau in automation, and we
can barely deal with the plateau that
we’re on now.”

5 ()
Y &)
Science Service, Inc. is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%;%
Science News. MIKORS

Two case histories — testing the safety
software for Ontario Hydro’s Darlington
plant and a software error that nearly
crippled AT&T'’s long-distance network —
nicely illustrate this point.

AT&T’s long-distance telephone

service for nine hours in January
1990, dramatically demonstrates what
can go wrong even in the most reliable
and scrupulously tested systems. Of the
roughly 100 million telephone calls
placed with AT&T during that period,
only about half got through. The break-
down cost the company more than $60
million in lost revenues and caused con-
siderable inconvenience and irritation
for telephone-dependent customers.

Thetrouble began at a “switch” —one of
114 interconnected, computer-operated
electronic switching systems scattered
across the United States. These sophisti-
cated systems, each a maze of electronic
equipment housed in a large room, form
the backbone of the AT&T long-distance
telephone network.

When a local exchange delivers a tele-
phone call to the network, it arrives atone
of these switching centers, which can
handle up to 700,000 calls an hour. The
switch immediately springs into action. It
scans a list of 14 different routes it can use
to complete the call, and at the same time
hands off the telephone number to a
parallel, signaling network, invisible to
any caller. This private data network
allows computers to scout the possible
routes and to determine whether the
switch at the other end can deliver the
call to the local company it serves.

Ifthe answer is no, the call is stopped at
the original switch to keep it from tying
up aline, and the caller gets a busy signal.
If the answer is yes, a signaling-network
computer makes a reservation at the
destination switch and orders the origi-
nal switch to pass along the waiting call —
after that switch makes a final check to
ensure that the chosen line is functioning
properly. The whole process of passing a
call down the network takes 4 to 6 sec-
onds. Because the switches must keep in
constant touch with the signaling net-
work and its computers, each switch hasa
computer program that handles all the
necessary communications between the

T he software glitch that disrupted

SCIENCE NEWS, VOL. 139

®
www.jstor.org

switch and the signaling network.

AT&T's first indication that something
might be amiss appeared on a giant video
display at the company’s network control
center in Bedminster, N.J. At 2:25 p.m. on
Monday, Jan. 15, 1990, network managers
saw an alarming increase in the number
of red warning signals appearing on
many of the 75 video screens showing the
status of various parts of AT&T’s world-
wide network. The warnings signaled a
serious collapse in the network’s ability to
complete calls within the United States.

To bring the network back up to speed,
AT&T engineers first tried a number of
standard procedures that had worked in
the past. This time, the methods failed.
The engineers realized they had a prob-
lem never seen before. Nonetheless,
within a few hours, they managed to
stabilize the network by temporarily cut-
ting back on the number of messages
moving through the signaling network.
They cleared the last defective link at
11:30 that night.

Meanwhile, a team of more than 100
telephone technicians tried frantically to
track down the fault. By monitoring pat-
terns in the constant stream of messages
reaching the control center from the
switches and the signaling network, they
searched for clues to the cause of the
network’s surprising behavior. Because
the problem invoived the signaling net-
work and seemed to bounce from one
switch to another, they zeroed in on the
software that permitted each switch to
communicate with the signaling-network
computers.

The day after the slowdown, AT&T
personnel removed the apparently faulty
software from each switch, temporarily
replacing it with an earlier version of the
communications program. A close exam-
ination of the flawed software turned upa
single error in one line of the program.
Just one month earlier, network techni-
cians had changed the software to speed
the processing of certain messages, and
the change had inadvertently introduced
a flaw into the system.

From that finding, AT&T could recon-
struct what had happened.

he incident started, the company

discovered, when a switching cen-

ter in New York City, in the course
of checking itself, found it was nearing
its limits and needed to reset itself — a
routine, maintenance operation that
takes only 4 to 6 seconds. The New York
switch sent a message via the signaling
network, notifying the other 113 switches
that it was temporarily dropping out of
the telephone network and would take no
more telephone calls until further notice.
When it was ready again, the New York
switch signaled to all the other switches
that it was open for business by starting
to distribute the calls that had piled up
during the brief interval when it was out

FEBRUARY 16, 1991

of service.

One switch in another part of the
country received its first message that a
call from New York was on its way, and
started to update its information on the
status of the New York switch. But in the
midst of that operation, it received a
second message from the New York
switch, which arrived less than a hun-
dredth of a second after the first.

Here's where the fatal software flaw
surfaced. Because the receiving switch’s
communication software was not yet fin-
ished with the information from the first
call, it had to shunt the second message
aside. Because of the programming error,
the switch’s processor mistakenly
dumped the data from the second mes-
sage into a section of its memory already
storing information crucial for the func-
tioning of the communications link. The

switch detected the damage and prompt-
ly activated a backup link, allowing time
for the original communication link to
reset itself.

Unfortunately, another pair of closely
spaced calls put the backup processor
out of commission, and the entire switch
shut down temporarily. These delays
caused further telephone-call backups,
and because all the switches had the
same software containing the same error,
the effect cascaded throughout the sys-
tem. The instability in the network per-
sisted because of the random nature of
the failures and the constant pressure of
the traffic load within the network.

Although the software changes intro-
duced the month before had been rig-
orously tested in the laboratory, no one
anticipated the precise combination and
pace of events that would lead to the
network’s near-collapse.

In their public report, members of the
team from AT&T Bell Laboratories who
investigated the incident state: “We be-
lieve the software design, development
and testing processes we used are based
on solid, quality foundations. All future
releases of software will continue to be
rigorously tested. We will use the experi-
ence we've gained through this problem
to further improve our procedures.”

In spite of such optimism, however,
“there is still a long way to go in attaining

dependable distributed control,” warns
Peter G. Neumann, a computer scientist
with SRI International in Menlo Park,
Calif. “Similar problems can be expected
to recur, even when the greatest pains are
taken to avoid them.”

ven a relatively short, simple com-

puter program can prove difficult

to check out, as illustrated by the
tremendous effort required to ensure the
correctness of the software for the Dar-
lington power station.

Darlington’s two shutdown systems op-
erate independently, each using different
sensors, different shutdown mechanisms
and different computers controlled by
software written by separate teams.
Their sole purpose is to shut the plant
down if the values of certain variables

On a typical business
day, AT&T's sophis-
ticated network-man-
agement center in Bed-
minster, N.J., monitors
the handling of 115 mil-
lion telephone calls.
The center’s 75-screen
video wall depicts the
network’s performance
worldwide.

exceed preset limits.

Although shutdown systems have a
simple task, the computer-based version
designed by Ontario Hydro engineers
turned out to be significantly more com-
plex than the straightforward, easily in-
spected mechanical controls it replaced.
Complicated pathways and shared data
took the place of individual, obviously
connected devices.

Officials at the Atomic Energy Control
Board (AECB) in Ottawa, Ontario, which
regulates and licenses Canadian nuclear
power plants, decided they needed out-
side help in evaluating the software in-
structions. “There’s only so much you
can do by reading it line by line — the
usual approach,” says AECB’s G.J.K.
Asmis.

To dig deeper into the reactors’ soft-
ware, AECB turned to Parnas. Known as
an outspoken critic of the Strategic De-
fense Initiative because of its unprece-
dented reliance on software, Parnas has
long argued that computer programmers
must take a more disciplined approach to
writing software in order to improve its
quality and avoid serious flaws. During
the 1980s, he and his associates had
developed a bank of mathematical tech-
niques for evaluating computer pro-
grams.

“When I looked at the code [lines of
instructions], it became clear that I

105

couldn’t say if it was okay or not,” Parnas
recalls. “All 1 could say was that the
documentation [explaining the function
of each part of the program] was too
vague.”

For example, consider the specifica-
tion: “Shut off the pumps if the water level
remains above 100 meters for more than 4
seconds.” The sentence appears clear —
but what if the water level varied during
the 4-second period?

Parnas came up with three different
interpretations of this statement, based
on different ways of finding the average
water level. A programmer could choose
only one of the three. Which was correct?

When Parnas checked with the engi-
neers at Ontario Hydro, he discovered
that their interpretation, based on long
experience with the design of shutdown
systems, differed from the three choices
he had suggested. This example told
Parnas that the specifications for the
shutdown software had to be expressed
much more precisely.

The engineers proved reluctant to
spend additional time writing more de-
tailed specifications. “We argued that
even if the specification wasn’t written
down in a mathematically precise way, an
experienced designer would know what it
means,” Archinoff says.

owever, AECB officials were suffi-
H ciently concerned about poten-
tial problems that they insisted
on a thorough review incorporating a
variety of software-checking techniques.

The Ontario Hydro team had already
systematically subjected their software
to a large number of carefully con-
structed tests designed to ensure that it
functioned properly under a variety of
circumstances. But planned tests such as
these cover only a fraction of the possible
paths through the software, and they
often miss subtle cases.

Parnas recommended that Ontario Hy-
dro also try random testing — for exam-
ple, by furnishing to the shutdown sys-
tems randomly generated sensor data to
see how they responded. “That’s often
more effective than carefully controlled
testing,” he says.

Furthermore, because system de-
signers usually can’t guarantee that their
specifications cover every possible way
in which a system will be used, many now
perform a hazard analysis. The idea is to
consider all the ways in which a system
can fail, and then to work backwards
through the hardware and software com-
ponents to determine what factors could
cause such failures. This enables de-
signers to incorporate safeguards that
specifically prevent these problems from
occurring.

“You have to build safety into soft-
ware,” says Nancy G. Leveson of the
University of California, Irvine, who pi-
oneered hazard analysis for software.

106

“Just trying to get it correct isn’t enough.”

he final stage, involving tech-

niques developed by Parnas and

his colleagues to prove mathemat-
ically that the software does what the
requirements ask, proved both exhaust-
ing and exhaustive.

Three separate teams went to work.
One examined just the computer program
and painstakingly determined what each
section of the program actually did. A
second team converted the systems’ orig-
inal specifications into precise mathe-
matical statements, written out in the
form of tables. Finally, a third team tried
to find any mismatch between the mathe-
matically expressed specifications and
the program functions determined by the
first group, and listed all discrepancies.

“None of the jobs was fun, but they
were doable,” Parnas says. “The effect. ..
was to reduce the extremely complex task
of reviewing the system to a large number
of relatively simple tasks. The tasks were
often dull and tiresome, but the systema-
tic procedure . . . made it possible to take
breaks and to rotate personnel to prevent
burnout.”

“They ended up with hundreds of dis-
crepancies, but most were benign,” Asmis
says. In many cases, reviewers found that
the programmers had inserted extra in-
structions, such as additional safety
checks, which were not called for in the
specifications. The teams also uncovered
a handful of errors. None of the errors
proved serious enough to delay or pre-
vent an emergency reactor shutdown.

In the end, despite many minor
changes, the two computer programs
remained essentially the same as before.
“The engineers had put a lot of effort into
trying to get it right, and basically they
had succeeded,” Asmis says.

The entire checkout took about three
years. “The checking process had value,”
Archinoff says. “The problem is that it
was extremely costly — very labor-inten-
sive and time-consuming. In fact, if we
had to do it again, using the same
methods, we wouldn't use software. We'd
go back to using hardware.”

Many of the frustrations in the check-
ing process could have been avoided if
the software designers had written the
programs with review in mind. Ontario
Hydro engineers and experts from
Atomic Energy of Canada, Ltd. — de-
signers of the type of nuclear reactor
used in Canada — are now working with
AECB to establish standards for future
software projects. Then Ontario Hydro
personnel will rewrite the Darlington
shutdown software to reflect the new
requirements.

“You want a program that not only
works but also can be understood by
more than one or two people,” Asmis
says.

The Darlington experience with safety-

critical software is not yet common in the
nuclear industry. In the United States,
most existing nuclear power plants use
computers only for functions unrelated to
plant safety. However, officials at the
Nuclear Regulatory Commission in Wash-
ington, D.C., believe that software control
will inevitably creep into nuclear plant
designs, and they are starting to prepare
for the task of software evaluation.

ost computer programs don't go
M through the kind of careful pro-

gramming and intense scrutiny
applied to the Darlington shutdown sys-
tem or the AT&T telephone network. The
process is both costly and time-consum-
ing, and many programmers lack the
expertise to use the sophisticated
methods necessary for ensuring software
reliability.

“Education is important,” Stone says.
“There are a lot of techniques [for deve-
loping reliable software] on the table that
are proven and work well, but they still
aren’t universally practiced.”

Moreover, anyone can call themselves
a computer programmer and market a
software product. “There’s no other tech-
nology that we depend on to the extent
that we depend on software technology
that is so unregulated,” says software
developer John Shore, president of Entro-
pic Research Laboratory, Inc., in Wash-
ington, D.C.

It’s not surprising, then, that computer
programs contain errors and computer
systems unexpectedly fail. Often, devel-
opers of commercial software work under
so much pressure to deliver a product
that new programs go out riddled with
flaws. “Whether you're a small company
struggling to survive or a big company
with a big budget, the pressures become
enormous, and you end up feeling that
you've got to get something out the door
to keep the customers satisfied or just to
survive,” Shore says. “One of the things
that saves us is that a lot of customers
have come to expect this. They under-
stand how complicated software is.”

Indeed, commercial software pro-
ducers sometimes appear to rely on their
customers to do a significant part of the
software testing for them. Any user of
such software must watch closely for
problems and anticipate the possibility of
sudden, inexplicable failures.

As computer programs grow larger and
more complex, and computer systems
keep taking on greater responsibilities,
managing the software monster becomes
increasingly difficult.

“The problem is intrinsically unsolv-
able, but you can always do better”
Neumann says. “It's a question of system
design, of experience, of good software
engineering techniques, of recognizing
risks, and of continually adapting to a
changing environment. There are no easy
answers.” O

SCIENCE NEWS, VOL. 139

