Shadows and Symmetries

Quasicrystal geometry
brings a new dimension
to art and design

By IVARS PETERSON

he painted panels and models of
T architectural structures dis-

played in artist Tony Robbin’s
spacious Manhattan studio have a way of
catching the eye and teasing the mind.
Featuring brightly colored polygons and
angular wire frames, these evocative cre-
ations respond almost magically to
changes in light and an observer’s view-
ing location.

Robbin’s designs of domes and vaulted
ceilings in particular offer startling geo-
metric perspectives. Constructed from
networks of linked rods, with a sprinkling
of diamond-shaped faces filled in by
tinted, transparent plates, these struc-
tures reveal paradoxical patterns that
combine orderliness and symmetry with
an element of unpredictability.

This visual effect becomes apparent
when one imagines standing beneath one
of these lacework canopies. Looking
straight up, one would see a carousel of
overlapping, five-pointed stars. But the
view slightly to one side would reveal a
dense thicket of squares, while the view
to the other side would show a network of
triangles and hexagons.

Similarly, as the sun moves across the
sky, the shadows cast by a web of rods
suspended in the air would shift from one
geometric pattern to another at different
times during the day. It’s as though three
different structures lay hidden inside the
same object, Robbin remarks.

Equally intriguing, these embedded
geometric patterns don't repeat them-
selves in the same way that a network
consisting of rods linked to form solely
squares or triangles would repeat itself.
Every section of the dome looks a little
different from every other section. Yet the
structure itself is clearly no crazy quilt of
randomly placed polygons (see dia-
gram).

Such a subtle and paradoxical blend of
symmetry and irregularity both sur-
prises and delights viewers, Robbin says.
From the beginning of time, human be-
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Computer plots of the same quasicrystal dome seen from
different angles reveal a nonrepeating geometric pattern.

ings all over the world have felt com-
pelled to search for and make patterns,
he contends, “so when you have a non-
repeating pattern, it’s profoundly cap-
tivating.”

Robbin’s creations stem from the dis-
covery nearly a decade ago of a new class
of crystalline materials — the so-called
quasicrystals —which display evidence of
an unconventional atomic arrangement.
That discovery focused the attention of
crystallographers, physicists, mathema-
ticians and others on the occurrence of
nonrepeating patterns in both nature and
mathematics. It also opened up the possi-
bility of bringing a new kind of geometry
with fascinating visual and structural
characteristics into art and architecture.

uasicrystals first took center
stage in late 1984 when Dan
Shechtman of the Israel Insti-
tute of Technology-Technion and his col-
laborators reported the discovery of an
aluminum alloy that yielded a peculiar
diffraction pattern (SN: 3/23/85, p.188).
Electrons reflected from the material
created an image consisting of concentric
rings of well-defined spots arranged so
that the overall pattern had a fivefold
symmetry. In other words, rotating the
pattern through 72 degrees would bring it
into a new position in which the pattern
looked just as it did in the old position.
The sharpness of the spots indicated
that the atoms in the material were
organized in some orderly fashion rather
than randomly placed. But the pattern’s
unusual fivefold symmetry suggested
that the atoms could not lie in one of the
orderly arrangements of repeating units,
or building blocks, conventionally as-
signed to crystals.
Coincidentally, mathematical physicist
Roger Penrose of the University of Oxford
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in England had been studying tilings —
ways of perfectly fitting together sets of
geometric shapes to cover a flat surface —
that also showed a kind of fivefold sym-
metry. He had been interested in finding
the smallest possible set of different tiles
that, used together, would cover the sur-
face without forming a regularly repeat-
ing pattern.

Of the several examples of these tiles
that Penrose discovered and investigated
in the 1970s, one set consisted of a pair of
diamond-shaped (rhombic) tiles, one fat-
ter than the other. Normally, rhombic tiles
can be laid down to form a repeating, or
periodic, pattern. But by working out
rules that specify which edges of one tile
can fit with certain edges of another,
Penrose could force the tiles into a non-
repeating pattern.

His “matching” rules forbid juxtaposi-
tions that lead to periodic arrangements.
Remarkably, the resulting patterns have
an approximate fivefold symmetry.

Other investigators later found three-
dimensional analogs of the Penrose til-
ings. In this case, the basic building
blocks are not tiles but polyhedrons —
three-dimensional figures bounded by
flat, polygonal faces. For example, it’s
possible to build up a nonrepeating pat-
tern in three dimensions simply by using
two types of rhombohedrons, which re-
semble skewed cubes.

to turn to the Penrose tilings and their

three-dimensional analogs as reason-
able models of the basic units that might
fit together to produce a quasicrystal.
Indeed, even before the discovery of
quasicrystals, crystallographer Alan L.
Mackay of Birkbeck College in London,
England, had speculated that Penrose
patterns could have a counterpart among

. t was natural for physicists and others
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Robbin

crystal structures.

In their attempts to elucidate the
physics underlying quasicrystals, many
researchers have studied a variety of
models based on the existence of particu-
lar types of structural units or tiles. Paul J.
Steinhardt of the University of Pennsyl-
vania in Philadelphia and his collabora-
tors, for instance, have expended consid-
erable effort working out rules specifying
how Penrose tiles could, step by step,
automatically join together to create the
kind of large-scale, nonrepeating struc-
tures that presumably form the basis of
quasicrystals (SN: 7/16/88, p.42).

However, such investigations have yet
to settle the issue of precisely where the
atoms in a quasicrystal lie and what
causes such materials to grow into these
particular atomic patterns. Although
Penrose tilings and their three-dimen-
sional analogs serve as convenient
models, no one has established a clear
connection between these mathemat-
ically derived forms and the physical
reality of quasicrystals.

At the same time, the discovery of
quasicrystals has prompted a reevalua-
tion of what constitutes a crystal. Scien-
tists in the past generally defined crystals
as materials whose atoms are arranged in
periodic patterns, as if the atoms were
locked into specific positions on a regu-
lar grid. Many researchers are now begin-
ning to think of a crystal as simply any
solid that yields a diffraction pattern
consisting largely of well-defined, bright
spots, as recorded on a photographic
plate when X-rays or electrons pass
through the material.

This new definition greatly enlarges
the number of geometric arrangements
that can be considered crystalline. It also
raises a host of subtle and difficult mathe-
matical questions concerning the rela-
tionship between specific geometries in
abstract mathematical models of crystals

Sets of two types of rhombohedrons fit
together to form a solid polyhedron.

and the positions and intensities of spots
in diffraction patterns.

“Tilings have nothing to do with real
quasicrystals,” says mathematician Mar-
jorie Senechal of Smith College in North-
ampton, Mass. “But they are a useful tool
for studying the geometry of non-

periodicity”
M are not the only ones inter-
ested in nonperiodic pat-
terns. A handful of artists, architects and
tinkerers, often quite independently, have
explored the possibilities of using the
flexibility afforded by such novel build-
ing-block schemes in their own designs.

In the late 1960s, inventor Stephen C.
Baer of Zomeworks Corp. in Albuquer-
que, N.M,, discovered that rods sprouting
from nodes in the shape of dodecahe-
drons — three-dimensional forms having
12 pentagonal faces — could be assembled
into polyhedral building units, which in
turn could be combined to create an
array of larger structures displaying a
fivefold symmetry. This idea became the
basis of his patented “zome” building
system.

That endeavor led to a book describing
the system, a toy construction kit and
various structural designs. “We have
playground climbers made with fivefold
symmetry [at various locations] in Albu-
querque,” Baer says.

Somewhat later, Koji Miyazaki of
Kobe University in Japan, working with
assemblies of fat and skinny rhom-
bohedral blocks, discovered that these
assemblies could be stacked and fitted
together to make
perfect space-fill-

athematicians and physicists

Sets of two 3
different types of
diamond-shaped

tiles fit together
nonperiodically to
create a Penrose
tiling, which forms
the basis for a
quilt design.

ing, three-dimen-
sional structures —
examples of the
three-dimensional
analogs of Penrose
tilings applied to
architecture.

Other designers
took a more mathe-
matical approach.
Motivated by a
fascination with
projections—in ef-
fect, the two- or
three-dimensional
“shadows” —of
higher-dimensional
geometric forms,
Haresh Lalvani, a
member of the ar-
chitecture faculty
at the Pratt Institute
in Brooklyn, inves-

uigisiadis , dig,, BpUIT :010Ud ‘BIZUB)OW 8ully IND

DECEMBER 21 & 28, 1991

tigated the use of various mathematical
procedures for transforming lattices in a
particular dimension into new geometric
patterns, including nonperiodic arrange-
ments, in a lower dimension.

Using this approach, Lalvani not only
created a variety of ingenious designs but
also anticipated a number of mathemat-
ical discoveries concerning the intrigu-
ing properties of Penrose tilings. In some
cases, he even went beyond what mathe-
maticians had succeeded in working out.

“But I have no [mathematical] proofs,”
Lalvani notes. “I have demonstrations [in
computer and architectural models].”

Designers aim to create pleasing or
provocative structures, so their designs
are governed by aesthetic considerations
rather than by matching or growth rules
and other mathematical niceties.

Nonperiodic structures built from just
afew basic types of building blocks offer a
number of striking features. In particular,
such modular systems introduce the pos-
sibility of constructing truly unique
structures that are both spatially and
visually interesting, Lalvani insists.

“The same system allows many possi-
bilities,” he says. “It allows nonrepetitive-
ness. It allows repetitiveness — if needed
— because the same basic units can be
laid out periodically” Lalvani holds sev-
eral architectural-design patents based
on these concepts.

ony Robbin started out as a
T painter, creating complex works

filled with interwoven patterns
and ambiguous figures to create the illu-
sion of seeing more than one object in the
same place at the same time. “I was
interested in ways of experiencing and
depicting space — complex spaces, multi-
ple spaces, paradoxical spaces,” he re-
calls.

That fascination inexorably pulled
Robbin into the realm of four-dimension-
al geometry. In his typical fashion, he
set out to learn everything he could about
the fourth dimension (SN: 5/27/89, p.328),
even hiring a tutor to introduce him to
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space-time and Einstein’s general
theory of relativity.

But it was a visit in 1979 to Brown
University in Providence, R.I., dur-
ing which he saw mathematician
Thomas F. Banchoff's computer-gen-
erated images of four-dimensional
hypercubes, that really persuaded
him that mathematics could serve as
his gateway to higher-dimensional
spaces. He also took away an appre-
ciation of what a computer could do
to help visualize complicated forms.

“I realized that real mathematics
was more liberating and richer, more
complicated and more exhilarating,
than my ignorant artist’s fantasies
about it,” he says. “I was dissatisfied
with using artists’ tricks to depict
spaces. | decided to take the plunge.”

Robbin’s immersion in mathemat-
ics led to the creation of a series of
works in which welded steel frames
protruded from painted canvas panels to
represent sections of hypercubes. Be-
cause the painted lines remain fixed and
the relative positions of the rods change
as a viewer walks past, such a work
recreates in a novel fashion the experi-
ence of seeing the multiple faces of a
three-dimensional shadow cast by a ro-
tating hypercube.

Robbin became interested in quasi-
crystals and the mathematics associated
with them when he learned that non-
periodic patterns can be understood
mathematically as slices or projections of
periodic lattices in higher dimensions. In
other words, regular patterns in six-
dimensional space — when seen in three
dimensions — could under certain cir-
cumstances appear as nonperiodic geo-
metric structures matching those that
scientists sometimes use as models of
quasicrystals.

Robbin obtained a computer program
from Steinhardt that enabled him to gen-
erate such three-dimensional quasicrys-
tal lattices on a computer screen. That
program was based on earlier work by
mathematician N.G. deBruijn, now re-
tired and living in Nuenen, the Nether-
lands, who had discovered a way to
generate Penrose tilings by drawing cer-
tain grids of intersecting lines and put-
ting a tile at each point of intersection.

Adapting Steinhardt’s computer pro-
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Artist Tony Robbin (left) uses models to
illustrate what a dome based on quasi-
crystal geometry would look like. His
structures feature rods sprouting from
dodecahedral nodes and faces filled in
by plastic plates (below).

gram to his own needs, Robbin added a
repertoire of features that enabled him to
visually explore a variety of designs
based on quasicrystal geometries. With-
out a computer to generate and manipu-
late these intricate, three-dimensional
forms, Robbin says, “it is truly difficult to
understand the aesthetic potential of
quasicrystal structures.”

isitors next summer to the newly
v established Center of Art, Sci-

ence and Technology at the
Technical University of Denmark in
Lyngby may be the first to experience one
of his quasicrystal designs in its full-scale
splendor. Center officials have commis-
sioned Robbin to construct a large model
and to conduct feasibility studies for
erecting a quasicrystal canopy and climb-
ing structure enveloping one end of the
center.

The Denmark project raises a number
of intriguing engineering issues — the
kind that come up whenever a novel
design makes the transition from concept
to real world. For instance, no one really
knows how strong or stable a full-scale
quasicrystal structure would be.

“To my knowledge, nothing is known
about its static behavior,” Lalvani says. At
the same time, there’s no hard evidence
that a quasicrystal structure would have

any unusual structural characteristics,
“but you intuitively feel there would be a
difference,” he adds.

“Because they are nonrepeating pat-
terns, quasicrystals are structurally dif-
ferent from anything yet built,” Robbin
argues. From his experience with
models, he suspects that quasicrys-
tal structures might be somewhat
spongy — able to absorb shock and
spring back.

But neither intuition nor tabletop
' models can substitute for a full engi-
neering analysis of how such a struc-
ture would behave. If it proceeds as
planned, the Denmark project will
provide the first opportunity to in-
vestigate the structural characteris-
tics of a quasicrystal-based design.
a l maticians, physicists, artists and

architects share the experience
of seeing in its complexity a pattern
that is subtle, yet powerful, and a
symmetry that is elusive, yet en-
thralling.

Mathematicians enjoy the oppor-
tunity to explore the diversity of
forms arising from simple rules and
principles. They look for links be-
tween these patterns and other
types of mathematics. They try to
enumerate the geometric possi-
bilities in any given situation. They
sense the mystery.

Physicists see in these patterns
hints of how nature may organize matter
under certain circumstances. They in-
vent and invoke special rules to create
models that appear to mimic the behav-
ior of real-life quasicrystals.

Artists and architects gain an aesthet-
ically and structurally challenging way of
dividing and organizing space — even
though they generally use only arbitrary
fragments of quasicrystals. “Normally, we
work with repetitive grids and lattices,”
Lalvani says. “A different underlying grid
— a different way of organizing space —
changes things radically”

More than most artists, Robbin seeks
inspiration in mathematics and science.
He tries to weave together mathematical,
physical and aesthetic threads into com-
pelling works of art.

“If youwant to be creative, it's essential
for an artist to know about geometries
and space,” Robbin says.

At the same time, scientists and mathe-
maticians benefit from new modes of
expression created by artists, he insists.
With their highly developed capabilities
of visualization, artists introduce new
viewpoints that contribute to the devel-
opment of science and culture as a whole.

While artists mine the territory and
exploit the riches that mathematicians
stake out, Robbin says, they also serve as
the provisioners and bankers of these
prospector mathematicians. 0

n quasicrystal geometry, mathe-
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