Holographic Proofs

Keeping computers and mathematicians honest
By IVARS PETERSON

fter years of
scrupulous rea-
soning and

% painstaking analysis,
Peter Fermax of Enor-

mous State University
truly believed he had proved the infa-
mous Snark Conjecture. Now he faced the
formidable task of persuading his fellow
mathematicians that his 1,210-page
manuscript contained not a single error
that would invalidate the proof.

Who would have the time and patience
to check each line and certify the proof’s
integrity?

Unlike his mathematical forebears,
who typically had to struggle mightily to
win acceptance of their lengthy proofs,
Fermax had a tool at his disposal that
greatly eased a proof checker’s burden.
Having already expressed his long chain
of reasoning in an acceptable, logical
form, he could call upon a supercomputer
to convert his statements automatically
into a “holographic” version of the same
proof.

As in a laser-generated hologram,
which makes possible the reconstruction
of a scene not only from the whole
recorded image but also from each tiny
subsection of the image, every statement
in a holographic proof contains informa-
tion about the entire proof. Thus, an error
in even a single line of the original proof
has a high probability of showing up in
any given line of the holographic proof.

In effect, converting a proof into its
holographic form greatly amplifies any
mistakes present and makes them more
readily detectable. To ascertain a proof’s
validity, a checker has merely to examine,
say, a few dozen statements. There’s no
need to look at the whole proof — no
matter how long.

Confident that his proof would with-
stand scrutiny, Fermax submitted the
holographic version to the editors of an
electronic journal. Using a rudimentary
desktop computer, an anonymous re-
viewer quickly checked the proof, and the
Snark Conjecture became the Fermax

Theorem.
Ithough such a
scenario pres-
ently exists more
in the realm of fantasy
than in the real world,
computer scientists
382

have over the last few years established
the basic principles underlying this sort
of scheme. Recent advances in theoreti-
cal computer science already point to a
remarkably powerful means of checking
the correctness of specific answers sup-
plied by a computer.

Quite unexpectedly, the same ad-
vances also provide important insights
into the strict limits that researchers face
when attempting to compute even ap-
proximate answers to a variety of prob-
lems in computer science. They now
know that if it takes an unrealistically
long time to compute the exact solutions
of certain problems that involve choosing
optimal strategies from a host of possi-
bilities, then finding acceptable approxi-
mate answers will encounter the same
barrier.

“This is something that follows in the
best traditions of mathematics, where the
beauty and the power of a new method
comes from connecting things that don’t
resemble one another” says computer
scientist Laszlo Babai of the University of
Chicago.

“These are really crucial develop-
ments,” agrees Leonid Levin of Boston
University.

Babai and Levin were among the pro-
fessors and students at a number of
institutions who contributed to the chain
of results that led to this convergence
between proof checking and the com-
plexity, or difficulty, of computing an-
swers to certain problems.

Moreover, once computer scientists
hurdle some of the obstacles in these
theoretical results, “I think they may
have dramatic practical consequences,”
Levin says.

At the root of these developments lies
the startling notion of a probabilistic,
interactive proof. Unlike traditional
methods — familiar to any student who
has tried to prove one of Euclid’s geomet-
rical theorems by constructing a chain of
statements inexorably leading to the nec-
essary conclusion — this new technique
relies on randomness and the interplay
between a “prover” and a “checker” to
achieve a practically unassailable proof.

“What is new and very different is that
one can convince somebody [of a proof’s
validity] by using coin flipping and inter-
action,” says Manuel Blum of the Univer-
sity of California, Berkeley, who played a
leading role in developing this concept.
“I'm excited about that because I think

I8

v
Science Service, Inc. is collaborating with JSTOR to digitize, preserve, and extend access to V2
Science News. MIKORS

theoretical computer science has intro-
duced a new paradigm here —a paradigm
proving to be very powerful for many
different reasons and purposes.”

Computer scientists several years ago
used this concept as the basis for the
wonderfully counterintuitive notion of a
“zero-knowledge proof.” Such a scheme
permits someone to persuade others that
a particular theorem she has proved is
true without giving away anything about
how to go about proving the theorem
itself (SN: 8/30/86, p.140).

lum has applied
B the concept of in-

teractive proofs
to what he terms “re-
sult checking” or “pro-
gram checking.”

Computer scientists normally count on
two methods for ensuring the reliability
of computer programs. They can mathe-
matically prove that a given program
works correctly for all possible inputs,
but that’s usually very difficult, if not
infeasible. Alternatively, they can test the
program by feeding it various inputs, but
in this case there’s no assurance that the
tests cover all the types of inputs a
program may encounter.

In contrast, result checking provides a
way of determining whether a program,
given a certain input, produces the cor-
rect answer for that particular input.
Conceptually, the process isn't very differ-
ent from the high-school exercise of
substituting a calculated answer back
into the original equation to check that
the answer is correct.

“The principal idea here is that it’s
possible to get a program to convince you
that the answer it gave you is correct,”
Blum says. “What you're interested in is
either knowing that there’s an error
somewhere, in which case you would
debug the program, or getting strong,
convincing evidence that the particular
answer you got from the program is
correct, even though the program itself
may contain bugs.”

Blum illustrates his method with the
example of determining whether two ap-
parently dissimilar graphs — sets of
points, or nodes, connected to one an-
other by lines to form networks — are
really the same. One such graph may
represent, for example, the electrical
properties of a circuit and another the
related pattern of connections fabricated
in a silicon chip.

Using a standard, off-the-shelf com-
puter program, an engineer can ask
whether the two graphs are really the
same. But is the “yes” or “no” answer
computed by the program correct?

If the two graphs really are the same, a
checker has a standard, well-known
method for confirming a “yes” answer. If
the answer is “no,” then the checker can
trick an erroneous program into reveal-

SCIENCE NEWS, VOL. 141

®
www.jstor.org



ing that it has no good reason for its
wrong answer. The checker feeds the
program the first of the two graphs and
either a new version of this graph — in
which the nodes are randomly relabeled
but the connections remain unchanged —
or a randomly relabeled version of the
second graph.

If the program (and everything else,
including the computer hardware) is
functioning correctly, then it should give
a “yes” answer whenever it sees the first
graph paired with the relabeled version
of the same graph and a “no” answer
whenever it sees the first graph and a
relabeled version of the second graph.
Any other responses indicate that a fault
lurks somewhere in the software or hard-
ware.

In this case, because a checker pre-
sents one or the other of these alternative
pairings randomly and repeats the proc-
ess a few dozen times, the program has a
negligible chance of “guessing” correctly
and supplying the appropriate answer
each and every time.

“There is a chance that the program
can fool this checker, but the chances of
doing so are extremely small,” Blum says.

On a small scale, Blum already uses
such a scheme for routinely checking the
output of a calculator program designed
to perform certain kinds of arithmetic
useful in cryptography. On one occasion,
long after he had forgotten his software
checker was there working in the back-
ground, Blum heard a signal indicating
the checker had found a problem.

Although the program handled many
pairs of 10-digit numbers successfully,
there was a particular pair on which it
failed. It turned out that the person who
had written the original calculator pro-
gram had inadvertently introduced a bug
that became evident only under very
special circumstances.

f course, Blum’s
idea didn't de-
velop in isola-

tion. Students contrib-

uted to its elucidation,

and other computer
scientists, sharing insights and commu-
nicating results via electronic mail, ex-
plored related questions. One such issue
concerned how quickly program check-
ing and similar procedures could be
accomplished in comparison with the
time a computer takes to perform the
original calculations.

About two and a half years ago, Babai,
Lance Fortnow and Carsten Lund, then a
student at Chicago but now at AT&T Bell
Laboratories in Murray Hill, N.J., estab-
lished that although a simple personal
computer couldn’t keep up with a super-
computer’s lengthy, convoluted calcula-
tions, it could nonetheless interrogate a
pair of such supercomputers independ-
ently working on the same problem and,

JUNE 6, 1992

within a reasonable time, determine
whether the answers were correct.

“There’s a mathematical way of actu-
ally conducting a session so that [the
supercomputers] can be tricked into con-
tradicting one another [if there’s an er-
ror],” Babai says.

Babai, Levin, Fortnow and Mario
Szegedy, also now at Bell Labs, then
improved on this procedure by devising a
method for transforming a calculation or
a mathematical proof into a so-called
transparent, or holographic, form that
magnifies any errors in the original. This
technique involves writing the initial
proof as a series of formal mathematical
statements and “adding” them together
in a special way. Mistakes in any of the
original statements would show up in
most of the resulting sums.

A checker using a modest, desktop
computer could verify the correctness of
the transformed calculation or proof by
examining only a relatively small number
of these sums. “Using a small but reliable
machine, we are verifying computation
on unreliable hardware with unreliable
software and verifying it in a time that is
much, much shorter than it takes to do
the actual computation,” Babai remarks.

“We are not able to prove theorems. We
are only able to check proofs,” he adds.
“This is an important distinction. To
come up with a proof, you need ingenuity.
To check a proof, you need only a ma-

chine.”
ther refine-
ments quickly
followed, but

the most surprising

outcomes — and per-

haps those of most im-
mediate practical value — lay in the
illumination of a deep link between proof
checking and the difficulty of solving
certain kinds of problems in computer
science. In such cases, experience
strongly suggests that any conceivable
recipe, or algorithm, for finding the solu-
tion takes such a long time to run that the
exact answer can't be reached within a
reasonable amount of time when the
number of choices grows large.

“As far as we can tell, the solution of
reasonably sized problems —for example,
graphs with a few thousand nodes —
would take vastly more than the lifetime
of the universe,” Babai asserts. This holds
even if one could use an ultracomputer,
which would have at its disposal all the
atoms of the known universe and could
perform an operation in the time it takes
light to cross an atom.

The “clique” problem, in which one has
to find — given a long list of people and
their friendships — the largest group of
people in which everyone in the group
likes everyone else in the group, repre-
sents a typical example. Computer scien-
tists have proved that a variety of other

important problems that involve search-
ing for optimal strategies in the face of a
large number of choices or possibilities
have the same level of difficulty.

Formulated by Lund, Szegedy, Rajeev
Motwani of Stanford University, and San-
jeev Arora and Madhu Sudan, both stu-
dents at Berkeley, the latest result proves
that for a significant group of such hard
optimization problems, one cannot guar-
antee finding even an approximate an-
swer within a reasonable time. For these
cases, it's no easier to find approximate
solutions than to find the exact answers.

“This [result] doesn't help you do any-
thing. It doesn't give you a new algorithm
to do something faster,” says David S.
Johnson of Bell Labs. “It helps you by
telling you what you can do and what you
cannot expect to do.”

“What's exciting is that you get [in-
sights] relevant to real-world problems. ..
out of highly theoretical, flights-of-fancy
considerations,” he adds.

fter the breath-
taking ride of re-
cent years from

one surprising insight

to another, computer

scientists still face a
host of unanswered questions. The latest
results on the difficulty of efficiently
arriving at approximate solutions apply
to only a portion of the hard optimization
problems that computer scientists face in
handling everything from airline sched-
ules to telephone networks. It still leaves
the feasibility and efficiency of many
approaches unresolved.

At the same time, computer scientists
are exploring what it would take to con-
vert properly expressed mathematical
proofs or computations into a transpar-
ent, or holographic, form. One difficulty
stems from the great length of the trans-
parent proof that one would typically
obtain from a given formalized proof.

“We are trying to reduce that size, and
once we reduce it to a reasonable level,
one would hope that practical applica-
tions could be found,” Babai says.

Anyone hoping to apply this technique
to a real mathematical proof, written
initially in a human language, would have
to find a way of translating it into a formal
language based explicitly on the rules of
logic. Only then could the proof be trans-
formed into its transparent guise. At the
same time, checking that a large com-
puter system is doing what it’s supposed
to do is limited by the difficulty of accu-
rately specifying a program’s or com-
puter system’s objectives.

More immediate practical benefits may
lie in the application of Blum'’s program-
checking schemes to computer calcula-
tions. With such methods, even in bug-
infested computer systems, one can ob-
tain anironclad guarantee that particular
answers are really correct. ]

383



