Basins of Froth

There are more things in heaven
and earth, Horatio,
Than are dreamt of in your
philosophy:.
— William Shakespeare, “Hamlet”
t first, James C. Alexander didn't
A know what to make of the stark
image — just two crossing lines —
projected on the screen. The emergence
of this “X” from a set of simple equations
being studied by a physicist didn't seem
to fit with what Alexander knew of the
mathematical behavior of so-called dy-
namical systems.

“It was a complete mystery,” Alexander
says of his first glimpse at a dynamics
meeting two years ago of a remarkable
pathology that appears to afflict certain
types of equations.

“In fact, while everybody else was
having a nice dinner that night, I was
scribbling on a place mat trying to figure
out what was going on,” he recalls.

Alexander’s pursuit of this aberrant
behavior did more than confirm the pres-
ence of the unlikely X. It eventually
unveiled a bizarre mathematical realm
even stranger, and in some sense wilder
and more unpredictable, than that found
in dynamical systems now commonly
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Visualizing the “chaos” surrounding chaos

By IVARS PETERSON

described as chaotic.

“If you had told me a year ago that such
a phenomenon could exist in a robust
sense in dynamical systems, | would have
said it can't happen,” says mathematician
James A. Yorke, one of Alexander’s col-
leagues at the University of Maryland in
College Park. “Yet here it is.”

This discovery adds yet another sur-
prising element to the growing stock of
exotic behavior arising out of the manip-
ulation of simple mathematical expres-
sions. “Clearly, in a philosophical sense,
Nature isn’'t done throwing curves at us,”
Alexander remarks.

Dynamics deals with change, and
mathematicians interested in dynamical
systems study how a system, defined by a
set of equations, shifts from one state to
another. For example, given the coordi-
nates of a starting point, a set of equa-
tions (termed a “mapping”) supplies a
way of computing a particular system'’s
new coordinates (or state) one unit of
time later.

Applying the
same equations to
the newly com-
puted coordinates
generates the sys-

tem’s state after a second unit of time has
passed, and so on. Such an iterative proce-
dure generates the coordinates of a chain
of points, called the “orbit” or “trajectory,”
corresponding to the original point.

Mathematicians are particularly inter-
ested in what happens to these orbits in
various dynamical systems. In some
cases, for instance, certain collections of
starting points lead to the same end point
or to a particular group of end points.
Such “final” states — whether a single
point or an array of points —are known as
attractors, and the area covered by start-
ing points that eventually arrive at an
attractor is called a basin.

For certain equations, even slight
changes in the starting point lead to
radically different sequences of orbit
points. At the same time, it becomes
virtually impossible to predict several
steps ahead of time precisely where a
particular trajectory will go. This sensi-
tive dependence on initial conditions
stands as a hallmark of chaos.

Despite this sensitivity, however, cha-
otic trajectories in a given dynamical
system still generally end up on an attrac-
tor that has a particular geometry —
albeit one that can look extremely convo-
luted and complicated.
But such an attractor
normally doesnt con-
tain a crisp, unam-
biguous X.

“You don't expect
crossings or sharp cor-
ners,” Alexander says.

Magnifying a portion of an
intermingled, riddled basin reveals
that neighboring starting points can
readily end up on different attractors.
This particular dynamical system has
three attractors (triangle); the color
(red, green, or blue) signifies to which
attractor a given starting point will go.
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y taking a close look at the phys-
B ics equations that originally cap-

tured his attention, Alexander
came to realize that the corresponding
dynamical system apparently has three
attractors. “The attractors in this case are
incredibly simple,” Alexander says.
“They’re just line segments.”

These line segments intersect to form
the outline of an equilateral triangle. The
physicist's X was merely one of the three
places where the line segments cross. “He
was looking at only a small part of what
was going on,” Alexander asserts.

Alexander found that any starting
point already on one of these lines will
follow a trajectory that skips erratically
back and forth along the line without ever
hopping off. This unpredictable behavior
furnishes evidence that the lines them-
selves are chaotic attractors.

The surprise comes in the behavior of
starting points chosen from areas near
the lines or inside the triangle. Whereas
one starting point follows a trajectory
leading to one of the line-segment attrac-
tors, another starting point only a tiny
distance away may end up on a different
attractor. There’s no way of predicting on
which attractor a given starting point will
land.

“Normally, if you start at some point
and then start at a slightly different point,
you generally expect to come down on
the same attractor,” Alexander says. In
this case, “if a point goes to one attractor,
then arbitrarily close to it there are
points that go to another attractor.”

In other words, the system’s extreme
sensitivity to initial conditions deter-
mines not only where on an attractor a
given point will land (as in chaos), but
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show the intricacy of the meshed basins
belonging to the attractors.

Such images suggest the idea of a
“riddled” basin. “Each basin is just shot
full of holes,” Alexander says. “The idea is
that no matter where you are, if you step
infinitesimally to one side, you could fall

you could end up at a com-

into one of the holes, meaning
pletely different attractor.” \

“These things are like a
foam of soap bubbles,” he
notes. “It's very hard to tell
whether you're on the soap
film or in one of the holes.”

But pictures by themselves
aren't enough to characterize a
dynamical system. “We've
been working largely from pic-
tures, but this is such a sensitive phenom-
enon that it would be really nice to have it
pinned down mathematically,” Alexander
says.

Alexander and Yorke, together with
Maryland’s Zhiping You and Ittai Kan of
George Mason University in Fairfax, Va.,
have started providing such a mathemat-
ical framework. Their preliminary results
appear in a paper to be published in the
INTERNATIONAL JOURNAL OF BIFURCATION
AND CHAOS.

ow common and how important
H is the phenomenon of inter-
mingled, riddled basins? No one
knows yet, but Yorke has identified a
second set of equations, sometimes used
in mathematical biology to describe fluc-
tuations in the populations of two com-
peting species, that displays similar sen-
sitivities.
“It’s not clear whether these are iso-
lated examples or whether they really
occur commonly” says mathematician
John W. Milnor of the State University of
New York at Stony Brook. “I think there’s
much work to be done in finding out just
how prevalent this kind of behavior is.”
Indeed, many mysteries remain.
For example, computed images show
that the probability that a starting point

Enlargement of the center of a riddled
basin associated with a dynamical
system having six attractors.

also on which attractor it will fall. Hence,
instead of having a single basin of attrac-
tion, this dynamical system has three
thoroughly intermingled basins.

Using modern computer graphics to
portray this newly unveiled, erratic be-
havior reveals an astonishingly rich land-
scape of filigreed features. The resulting
images, with three different colors used
to represent starting points that end up
on each of the three attractors, clearly
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will end up on a given attractor varies,
depending on the site of departure. In
other words, although one can't predict
on which attractor a given starting point
will land, one apparently has a higher
probability of reaching a particular at-
tractor by selecting starting points in
certain areas.

“We want to find out exactly how the
probabilities work,” Alexander says. “Can
you quantify them in any way?”

What's remarkable about this work is
that nothing about the equations them-
selves, derived from applications in
physics and biology, has changed. This
strange behavior has always been there,
but no one had previously thought to look
for it.

Now mathematicians suddenly have a
new realm to explore in what had seemed
a thoroughly familiar, commonplace
world. And researchers can begin to look
for evidence of equivalent wild effects in
physical or biological systems.

“The phenomenon of intermingled ba-
sins is not, I'm sure, as widespread as
chaos,” Yorke says. “Nonetheless, it indi-
cates that we may think we know what'’s
happening, but we have blind spots. How
many strange things are there out there?
How much more has everybody missed?”

“It’s not at all clear what the ramifica-
tions and nuances will be,” Alexander
adds. “There’s alot to do and lots of things
to look at. It’s like the beginning of a walk
into a forest.” d
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