Reviving Software Dinosaurs

Learning to decipher antiquated computer programs

he pharmacist typed in his cus-

tomer’s birth date: June 18, 1899.

The computer responded im-
mediately with the message: Invalid En-
try.

The wry smile on the pharmacist’s face
told the story. Once again, the computer
programmers who had written the soft-
ware used for tracking prescriptions and
managing a pharmacy had failed to antic-
ipate a real-life possibility — in this case,
that a customer could have been born
before the year 1900. By using only the
last two digits of the year in calculating
the customer’s age, the computer came
up with a negative number, and it rejected
the birth date.

Keeping track of time has a way of
confounding computer programmers.
Problems involving dates — and informa-
tion computed on the basis of dates —
continue to surface, especially in soft-
ware written years ago but still in use. In
many instances, the shortcuts that pro-
grammers once took to speed up a pro-
cedure or to save storage space in the
computer’s memory are no longer neces-
sary, but such simple subterfuges as using
two-digit years have survived in software
enjoying a lifetime much longer than its
developers had originally envisioned.

The biggest headaches may come with
the arrival of midnight at the start of the
first day of the year 2000. “There’ll be a
major crisis,” predicts Elliot J. Chikofsky,
an independent computer consultant and
a lecturer at Northeastern University in
Boston. “If we're not careful, it'll be
algorithmic anarchy”

At the turn of the next century, he
notes, “any system that stores less than
the full four digits of the year must, for the
first time, deal with a year number that is
smaller than its predecessor. Compari-
sons based on inequality will suddenly
change direction. Subtractions to dis-
cover [the] time interval will yield a
negative number.”

In the financial world alone, conse-
quences could include the scrambling of
interest calculations, delays in pension
benefits, misrecorded loan payments,
and unwarranted foreclosure notices.

“Imagine making a phone call to an-
other time zone at midnight and being
billed for 99 years,” Chikofsky adds.
Averting this impending disaster re-

88

By IVARS PETERSON

quires considerably more effort than
merely switching to four-figure years.
Many computer programs use dates for a
variety of purposes, from calculating
someone’s age to determining whether
one version of a computer file is older
than another, then automatically erasing
or overwriting the older one. Finding and
fixing all of these instances — some
deeply embedded and well hidden in the
software — is no simple matter.

I lem, however, pales in compari-

son with some of the difficulties
that businesses and other users of anti-
quated software must already confront in
trying to change the way they handle data
and operate their enterprises. These
firms face the daunting prospect of de-
ciphering enormous computer programs,
perhaps written a decade or more earlier
by programmers who are no longer with
the company, then patched up or mod-
ified by others, with little or no written
indication of what individual parts of the
programs are really supposed to do.

“The world is full of companies that
computerized 20, even 30 years ago, and
they have programs still running today
from back then,” says Richard C. Waters of
the Mitsubishi Electric Research Labora-
tories in Cambridge, Mass. “They have to
change these programs because com-
puters change and needs change. There’s
a huge backlog.”

“You can write new programs, but that
costs a fortune; or you can modify the old
ones, but that also costs a fortune,” he
adds.

The problem has become serious
enough that a new specialty within the
field of software engineering is starting to
emerge. Known as reverse engineering,
this endeavor involves the development
of automated techniques for recognizing
what a program does — for recovering
information from existing software.

In Baltimore this past May, Chikofsky
and Waters chaired the first research
conference and workshop devoted solely
to the reverse engineering of software.
The meeting attracted a wide range of
participants, all interested in getting a
better handle on how to decipher existing
software.

he turn-of-century date prob-

I8 ()
gl U
Science Service, Inc. is collaborating with JSTOR to digitize, preserve, and extend access to 2250
Science News. IMNOJN

he notion of reverse engineer-

ing goes back to the days when

competitors would carefully
take apart a rival’s product — whether a
car, a toaster, or an integrated-circuit chip
— to learn what makes it tick. Such
practices remain commonplace.

Reverse engineering of software differs
from traditional reverse engineering in
that it is usually applied not to a competi-
tor’s product but to the company’s own
computer programs. The oldest and most
deeply entrenched of these programs are
often described as legacy systems, and
analysis of this software to see what it
really does and how it does it constitutes
a crucial first step toward making
changes in such a system.

Suppose, for example, that a bank’s
computer program for calculating inter-
est, printing out customer statements,
and performing a variety of other func-
tions consists of 1 million lines of instruc-
tions (known as “code”). When the tax
laws change and the bank finds it has to
report the interest earned on certain
accounts in a different way, someone has
to alter the program to meet the new
requirement.

“This is a task that should make you
gasp,” Waters says. “You've got to look ata
million lines of code, figure out which
parts of the code are relevant ..., and
succeed in adding this capability without
affecting anything else [the program]
does already”

“Software is built in much the same
way as the house you live in,” he says. The
builders of the house probably had de-
tailed plans, but they failed to pass the
blueprints on to the homeowner. To putin
a new electrical outlet, the owner has to
figure out where the studs are, where the
wires go, and what to avoid if drilling is
involved.

“You just have to cut little holes and
peer around, and if you break something,
you have to fix it,” Waters says. “This is
exactly the mess people are in with
software — except that the software is
much more complicated. With the bank
software, it’s like you're doing this not for
your house but with the entire World
Trade Center”

But even having the blueprints in hand
may not be enough. It’s quite possible that
the builder didnt actually follow the

SCIENCE NEWS, VOL. 144

®
www.jstor.org



plans and, in fact, made modifications
along the way. “Exactly the same thing
happens with software,” Waters says.

A similar situation confronts individual
programmers responsible for smaller
projects. “In general, you're looking at
your own code,” Waters says. “It’s just that
you don’t remember the details of how
your own code works, so you have to
figure it out [from the program] before
you can change it.”

In this sense, “reverse engineering [of
software] is nothing new,” Chikofsky ad-
mits. Programmers have always had to do
it. But now the size and complexity of the
programs that require such scrutiny have
reached the point where only automated
methods of analysis can provide the
necessary insights. For old computer
programs, it's really a kind of software

archaeology.
C first to point out this need.
In the 1970s, he was a
graduate student at the University
of Michigan in Ann Arbor and
deeply involved in the develop-
ment of software designed to serve
as tools to help programmers write
better programs. The resulting
product, a suite of computer-aided
software engineering (CASE) tools,
was successful enough to be sold
commercially.

Chikofsky found himself over-
seeing the customer service side of
the operation. The problem he
faced was that on the average, the
staff of student programmers, who
worked on modifying and enhan-

hikofsky was one of the

tes

Ssocial

McCabe & A:

he Baltimore workshop on re-

verse engineering brought to-

gether about 75 computer scien-
tists and software engineers to compare
notes and identify research questions
worthy of further investigation. “We're in
a field where none of us are experts, but
we're learning a lot,” Chikofsky says. “The
workshop worked very well in bringing
together people who had been doing
what they didn’t realize was related work
in different areas.”

The meeting focused on automated
methods of analyzing software. These
methods, or tools — which themselves
take the form of computer programs —
examine other computer programs.

Depending on the product, they extract
various pieces of information concerning
how the software under examination is
organized, how its different parts may be
linked or related, and so on. Often, such
characteristics are displayed as diagrams,

ful information about programs that area
million lines long, but they don't actually
do very much, he adds.

Nonetheless, the methods are good
enough to give someone at least an idea of
whether a complicated piece of software
is salvageable or whether it would be
better to start afresh. “Reverse engineer-
ing opens up new pathways for us,”
Chikofsky says. “You often don't have to
throw away the whole system.”

But there is also a great danger of
collecting too much information. “It's
very, very easy to get lost in the plumb-
ing,” Chikofsky notes.

The meeting participants identified a
variety of needs, ranging from surveys to
identify successes in applying various
techniques to improved testing of re-
verse-engineering tools.

It's difficult to evaluate the quality of
various tools, says James H. Cross II, a
computer scientist at Auburn University
in Alabama. “There’s no common
set of reverse-engineered . .. code
against which we can benchmark
tools and compare them.”

S ble to tell a bank’s com-

puter program about
changes in tax law and let the
program automatically make the
necessary modifications to itself.
But that remains a distant goal.

“If we started in Boston, and this
goal is San Francisco, the tools that
we have now reach only to Albany,”
Waters says. “Exactly how to get
farther from Albany is not com-
pletely clear”

omeday, it may be possi-

cing the product, turned over

Most of the present effort has to

roughly every two years.

“So we had to keep track of the
software to understand what we
had and to be able to use it
Chikofsky says. He solved the prob-
lem by using the product to exam-
ine itself. The same computer-
based techniques that helped pro-
grammers write better-structured
software with fewer errors were
also useful for analyzing existing
computer programs.

Chikofsky described this novel

Computer-generated charts like this reveal the
links tying together different parts of a computer
program. They highlight particularly complex
connections, which could cause problems for
anyone attempting to modify or fix the program.
When Elliot Chikofsky applied this technique to
vote-tabulation software he had written several
years earlier, he discovered that certain parts of
his program were more complicated than he had
originally supposed. ‘I learned an awful lot about
how complex the program was,” he says. “| would
never have thought of trying to simplify the
program had | not used this tool to give me

go into helping the people respon-
sible for maintaining existing soft-
ware. “In the short term, you have
to help them fight the fires that
they’'ve got now,” Waters declares.
And that effort could take the next
20 or more years.

Meanwhile, the first day of the
year 2000 is less than seven years
away. Everyone in the computer
community knows about the po-
tential time bomb ticking away in
antiquated software. But most com-

use of CASE tools in several papers

feedback.”

puter professionals are too busy

in the late 1970s, but few in the
computer community showed in-
terest.

“I spent more than a decade crying in
the wilderness, telling people they could
use this stuff for the [software] mainte-
nance effort,” he says. “Then all of a
sudden, it took off like a shot.”

This recent explosion of interest in the
reverse engineering of software reflected
a grave necessity. Two decades ago, fixing
old programs wasn’t a major problem
because there weren't many old pro-
grams. “Now there are,” Waters says. “It's
just part of the maturity of the field.”

AUGUST 7, 1993

tables, or charts. With this information, a
user can begin to build a mental model of
how the software functions.

But so far, most of these reverse-engi-
neering tools have limited capabilities.
“There are research tools that operate on
programs 1000 lines long, and they do
interesting things,” says Waters. “But
there’s no immediate reason to believe
that something that works on 1,000 lines
will work on a million.”

At the same time, some commercial
products can provide a modicum of use-

with more pressing problems and
concerns.

In 1989, Chikofsky wrote in IEEE SoFT-
WARE: “What can we do to prevent disrup-
tion? Well, besides declaring Jan. 1 and 2,
Feb. 29, and March 1 in the year 2000 to be
international business holidays for clock
resetting and database reprogramming,
we can begin now to conduct a compre-
hensive audit of date usage in our existing
systems and new designs.”

That effort has barely started. But
when the time comes, reverse-engineer-
ing tools will certainly come into play to
help save the day.

89



