Policing
Digits

New keys for keeping digital data straight

0

By IVARS PETERSON

“little bit can make a big difference.
Z 1at’s the danger in transmitting or
" / oring data as strmgs of ones and
€708’ — whether encoded in radio waves
broadcast by a distant spacecraft or in
microscopic pits on the gleaming surface
of a compact disk.

Suppose that the sequence 00101011
means “plus.” Static picked up by a radio
receiver’s antenna or a speck of dust
marring a disk’s surface can readily flip a
bitfrom 0 to 1 or 1 to 0, perhaps changing
the original sequence to 00101101, which
stands for “minus.” Addition suddenly
becomes subtraction.

To circumvent such problems, re-
searchers have over the years invented a
variety of ingenious strategies to ensure
that a computer or some other digital
device receiving information can auto-
matically detect and correct random er-
rors. These mathematically based “error-
correcting codes” now permit clean
sound reproduction even from a
scratched or dirty compact disk, accurate
storage of data on a computer’s hard
drive, and reliable data communication
at low power over long distances.

“Almost every time digital information
is transmitted or stored in a real-world
application, some form of error coding is

requ1red 7 says P Vljay Kumar of the/ 7

University of Southern California in Los
Angeles. It’s an invisible but pervasive
technology critical to the reliable func-
tioning of many types of information
systems.

The trouble is that these error-correc-
ting codes require the addition of extra
digits to a message or signal. This addi-
tional information allows a received mes-
sage or block of stored data to be checked
for errors, which can then be corrected.
But it also reduces the rate at which
information can be transferred. And it
takes time to encode and decode the raw
data.

Hence, users of these codes must bal-
ance maximizing the reliability of data
transmission against keeping the rate of
information transfer as high as possible.
They also need to consider the overhead
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imposed by the time-consuming encod-
ing and decoding operations required
before and after data transmission.

Researchers are constantly on the
lookout for practical error-correcting
codes that are more efficient and compact
than those currently in use. Two groups
have now uncovered a remarkable, previ-
ously unsuspected mathematical link be-
tween two types of error-correcting
codes originally thought to be quite dis-
tinct. This discovery, which allows cer-
tain complicated but highly efficient er-
ror-correcting codes to be expressed in
terms of simpler, easier-to-use types,
opens up the possibility of achieving
quicker error-free communication.

“It’s a very pretty result,” remarks Neil
J.A. Sloane of AT&T Bell Laboratories in
Murray Hill, N.J., who was one of the
discoverers. Sloane’s Bell Labs colleague
A. Robert Calderbank and Patrick Solé of
the National Center for Scientific Re-
search (CNRS) in Valbonne, France,
share credit for the finding. Kumar and A.
Roger Hammons Jr., now at Hughes Air-
craft Co. in Canoga Park, Calif., independ-
ently worked out the same result.
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gl ¢ at the other end. For example, the
person can talk louder or more slowly. If
the noise persists or proves excessive, the
person can repeat words several times or
even spell them out.

The key to digital error detection and
correction also lies in redundancy. For
example, one can simply repeat each of
the digits of a message a certain number
of times. Thus, the message 101 could be
transmitted as 111000111, and the com-
puter at the receiving end would decode
this sequence to get 101. If one bit had
changed during transmission, two others
would still be correct, and the computer
would select the majority digit as the
correct entry.

But this method requires the transmis-
sion of a large number of extra digits,
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making it slow and inefficient. Another,
more practical approach requires adding a
small number of “check” digits to the end
of each segment, or block, of a message.
This procedure resembles the verbal ploy
of saying “aas in alpha, r asin Romeo,” and
so on, to help a listener correctly identify
the letters of a spelled-out word.

For example, suppose a message can be
conveyed in blocks of four digits each,
ranging from 0000 to 1111. According to an
error-correcting scheme known as the
Hamming code, the addition of a care-
fully defined sequence of three digits to
each of these blocks makes it possible to
detect and correct errors that corrupt a
transmitted message.

Upon encoding, 0000 becomes
0000000, 0001 becomes 0001110, 0010 be-
comes (010101, and so on, right up to 1111,
which becomes 1111111. These extended
blocks are known as codewords. Al-
though the pattern in the codeword list
may not be evident to the eye, mathemat-
ical techniques readily pick it out.

The trick is to create such a strong
pattern in the set of codewords that
random flips of one or two bits in any
block will stand out like a sore digit. In
fact, mathematicians and communica-
tions experts have developed a number
of different mathematical schemes that
provide useful sets of strongly patterned
codewords.

Consider the message 1000 0101. En-
coded, it reads: 1000111 0101101. After
transmission, the message may look like
this: 1000011 0001101. The first block
doesn’t exist among the codewords in the
Hamming scheme, but it differs in only
one place from the codeword 1000111. No
other codeword comes this close. So the
decoding computer selects this code-
word as the most likely possibility and
corrects the flawed block accordingly.

Of course, the computer may still make
the wrong selection, depending on the
severity of the digit scrambling that oc-
curred during transmission. But by
choosing the extra digits in each code-
word carefully, communications experts
can significantly reduce the probability
of such cases of mistaken identity.
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K 1 coded messages may be easily
ge etated and recognized by simple com-
puter routines. So-called linear codes,
which exhibit strong patterns, meet this
criterion. Nearly all error-correcting
codes now in commercial use are linear.

However, researchers have long known
of nonlinear codes that are far more
efficient—requiring fewer extra digits per
block — than equivalent linear codes. But

decoding nonlinear codes has generally,

proved so cumbersome and complicated
it hasn’t been worthwhile to use them.

“It has been very hard to encode and
decode them,” Sloane says. “But they are
great codes. In fact, you can prove that
they're better than any linear code can
possibly be.”

A few years ago, Kumar started study-
ing a cellular telephone technology called
“code division multiple access” (CDMA),
which enables many users to broadcast
simultaneously over the same communi-
cations channel. He brought to this proj-
ect both considerable practical expertise
and a high degree of mathematical so-
phistication, a combination not often
found among researchers.

In the CDMA approach, signals are kept
straight by assigning a separate code-
word or sequence of digits — like those
used in error-correcting codes — to each
user as an identifying tag. Because having
a greater number of codewords would
permit more users to obtain access to the
system, Kumar was interested in finding
alternative schemes for producing more
codewords.

He and his coworkers succeeded in
creating a potentially useful, efficient
linear code based not on binary digits
(0,1) but on quaternary digits (0,1,2,3).
The surprise came when they expressed
their new linear quaternary code in bi-
nary form. That is, they replaced each 0
with 00, 1 with 01, 2 with 11, and 3with 10to
get binary strings twice the length of the
original quaternary strings.

Kumar and Hammons recognized in
the binary strings the Kerdock code, one
of the well-known, highly efficient non-
linear codes that had previously proved
so difficult to use. Similar relationships
linked quaternary sequences with other
nonlinear codes.

“You get the [nonlinear] codes in a
really simple and beautiful manner,”
Sloane declares.

Meanwhile, unaware of the work that
Kumar and Hammons had done, Sloane,
Calderbank, and Solé started a little later
and followed a different mathematical
track to come to the same conclusion.
Calderbank found out about the USC
results when he noticed the title of a talk
by Kumar and Hammons scheduled for
presentation at an information theory
symposium. He telephoned Kumar.

“We talked briefly, but it was clear there
was a great deal of overlap in our results,”
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Kumar says. The two groups had worked
out essentially the same thing, though
each had chosen to elucidate different
details.

“We decided everyone would be better
served by writing one paper rather than
two,” Calderbank says. The joint paper
will appear later this year in the IEEE
TRANSACTIONS ON INFORMATION THEORY.

'w mathematical work is quickly
" e raveling the relationship be-

een the novel quaternary codes
amiliar binary ones. “After we made
the basic observation, we covered a lot of
ground very fast,” Calderbank says. And
this ground-breaking effort has contin-
ued at a rapid pace.

“There have been lots of nice spinoffs,”
Sloane notes.

Sloane, Kumar, Calderbank, and others
have followed up intriguing links be-
tween these codes and a variety of math-
ematical topics, including aspects of
number theory, group theory, and geome-
try. The new codes even suggest simple,
alternative strategies that statisticians
can use to design experiments for testing
the validity of hypotheses.

This improved understanding of the
mathematical underpinnings of codes
also means that several families of highly
efficient error-correcting codes could
soon be available for general use in
communications. The Hughes Network
Systems division of Hughes Aircraft, for
example, has filed a patent on an applica-

tion of quaternary codes to cellular tele-
phone systems. One product already in-
corporates the new technology.

Kumar has heard from colleagues that
the nicest thing about the new result is
that it provides a very simple answer to a
complicated question. “If something is
simple, you tend to use it more,” he notes.
“There’s no reason now not to use quater-
nary codes.”

“There are lots of potential applica-
tions here, and some very beautiful math-
ematics,” Sloane adds.

Inspired by the new results, several
groups are now looking for even better
codes, going beyond the quaternary
digits to other sets of numbers. They are
also looking for improved decoding tech-
niques that take advantage of the newly
discovered relationship between binary
and quaternary codes.

Indeed, just working out for quaternary
codes what is already known about bi-
nary codes would be a major undertak-
ing. “Basically, the theory of quaternary
codes is wide open,” Kumar says.

“I think it's really going to change
coding theory,” Sloane remarks. And con-
sumers may soon be picking up pocket
communicators that use the new codes to
keep their airborne messages straight.

“What we hoped for when we wrote the
first paper, and what seems to be coming
true, is that there’s an ... iceberg out
there,” Calderbank says. “The tip of the
iceberg is the binary field, but the rest of
the iceberg is interesting, too. There’s a
lot of it that’s under water. We think
there’s a lot of exploration to do.” 0O

All kinds of businesses use identifica-
tion numbers, from the bar codes on
food packages to the long strings of
numbers on credit cards and airline
tickets. These numbers often incorpo-
rate an extra “check” digit as a means of
detecting forgery or error.

Typically, the mathematical schemes
that underlie the assignment of check
digits permit computer detection of
incorrectly entered or scanned identi-
fication numbers. Unlike error-correct-
ing codes, however, they can’t automat-
ically fix the mistake.

Mathematician Joseph A. Gallian of
the University of Minnesota at Duluth
has studied the various methods used
to generate check digits in commercial
situations. For example, the last digit of
an airline ticket number should equal
the remainder left after dividing the rest
of the digits by 7. Thus, the ticket
number 170004595703 is presumably
correct, because dividing 17000459570
by 7 leaves 3 as the remainder.

This is the simplest but least effective
method of assigning a check digit, Gal-

Nabbing errors at the grocery store

lian says. Applied to a garbled version of
the original number, this method
catches some, but not all, possible er-
Yors.

A more complicated scheme used for
bar codes detects a larger proportion of
errors. For example, a box of Kellogg’s
Corn Flakes may have the following
number: 0 38000 00127 7. Suppose the
scanner at the local supermarket reads
this number as 0 58000 00127 7. How
does the computer connected to the
scanner detect the error?

The computer is programmed to add
together the digits in positions 1, 3, 5, 7,
9, 11 and triple the result, then add this
tally to the sum of the remaining digits.
If the result doesn’t end with a zero, the
computer knows the entered number is
incorrect. Try it on the Cheerios bar
code displayed on the previous page.

“This simple scheme will detect over
90 percent of all possible errors,” Gal-
lian says. Many credit card issuersuse a
slightly different method, which
catches 98 percent of the most common
errors. — 1. Peterson

7



