The rat-tat-tat of a snare drum. The

resonant, metallic ring of a kettle-
drum. It’s easy to distinguish the sounds
of different types of drums, even without
seeing the instruments.

What makes these sounds so readily
identifiable is that each drum vibrates at
characteristic frequencies, depending
mainly on the size, shape, tension, and
composition of its sound-generating drum-
head. This spectrum of frequencies — the
set of “pure tones” produced by a vibrat-
ing membrane stretched across a frame —
gives a drum’s sound its particular voice.

The sounds of drums also suggest im-
portant questions in mathematics. Sim-
plified and idealized to its mathematical
essence, a drum is a flat, two-dimension-
al surface held fixed along its rim. Only
the interior moves, which greatly re-
stricts the surface’s possible motions.

The resulting vibrations, or normal
modes, represent the solutions of a math-
ematical expression known as the wave
equation. In the drum’s case, the solu-
tions specify the vertical displacement of
each point on a surface bounded by a
closed curve, such as a circle or rectangle.

Over the centuries, mathematicians
have developed ways of solving the
wave equation to determine the normal
modes of various drum surfaces. They
have also pondered the inverse ques-
tion: Is it possible to infer a drum’s
shape from a list of its characteristic fre-
quencies?

Recent work on this issue has pro-
duced a number of intriguing results. It
turns out, for example, that different
membrane shapes can sometimes gener-
ate identical spectra of frequencies.
Thus, in principle, even a person with
perfect pitch can’t necessarily identify a
drum’s shape just from its sound.

number of mathematicians and
Aphysicists are studying how the
wiggliness of a drum’s rim affects
its sound, especially in cases where the
boundary is so wrinkled — with crinkles
atop crinkles — that it can be termed a
fractal.
“The study of the vibration of drums
with fractal boundaries and drums with

T he thundering boom of a bass drum.
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eating a Fractal Drum
a drum’s shape affects its sound

By IVARS PETERSON

fractal membranes...[has] significant
physical applications to the study of
porous media and to that of diffusion or
wave propagation on fractals,” says
mathematician Michel L. Lapidus of the
University of California, Riverside.

Lapidus described recent progress in
understanding the effects of these curi-
ous geometries at a meeting on wavelets
and fractals held earlier this year in
Pittsburgh.

Such investigations may eventually
furnish clues as to why fractals appear
to abound in nature, from crazily indent-
ed coastlines to the intricate branching
of air passages in the human lung.

Moreover, because the wave equation
plays a central role in physics, studies of
the vibrations of drums under different
conditions have important implications

These images show the wave patterns
observed experimentally in pairs of
microwave cavities having different
shapes but identical normal modes.

for a wide variety of concerns, including
the behavior of sound and light, the dif-
fusion of heat, and the workings of quan-
tum mechanics.

Physicists and mathematicians have
long recognized that the shape of the
boundary enclosing a membrane plays a
crucial role in determining the mem-
brane’s spectrum of normal-mode vibra-
tions. In 1966, mathematician Mark Kac,
then at Rockefeller University in New
York City, focused attention on the oppo-
site question.

Kac asked whether knowledge of a
drum’s normal-mode vibrations is sulffi-
cient for unambiguously inferring its geo-
metric shape. His paper, which proved
remarkably influential, bore the playful,
provocative title “Can One Hear the
Shape of a Drum?”

Previously, mathematicians had estab-
lished that both the area of a drum’s
membrane and the length of its rim
leave a distinctive imprint on a drum’s
spectrum of normal modes. In other
words, one can “hear” a drum’s area and
perimeter.

Later, mathematicians also proved that
if a membrane has holes, the number of
holes can be calculated from the drum’s
spectrum. But the question of whether
one can infer a drum’s geometrical shape
from its normal modes remained unre-
solved until 1991.

That was when mathematicians Car-
olyn S. Gordon and David L. Webb of
Washington University in St. Louis and
Scott Wolpert of the University of Mary-
land at College Park came up with two
drums that have equal areas and perime-
ters but different geometrical shapes.
They proved that the drums, each a mul-
tisided polygon, display identical spectra.

In theory, two drums built out of these
different shapes would sound exactly
alike. Both would generate the same set
of normal-mode frequencies.

Since the initial discovery, Gordon and
others have identified many pairs of
soundalike drums. All of the known exam-
ples have at least eight corners; typically,
each member of a pair consists of a set of
identical “building blocks” arranged into
different patterns.

The existence of these “isospectral”
forms indicates that even in relatively
simple settings and with a complete set
of measurements, it may be possible to
reach more than one conclusion. This
suggests that similar ambiguities could
arise in various physical situations—for
example, when geophysicists try to
reconstruct Earth’s interior from seismic
data or when medical researchers gener-
ate images of internal organs from X-ray
measurements.

“There are things you cannot deter-
mine [from a measured spectrum],” says
mathematician Dennis DeTurck of the Uni-
versity of Pennsylvania in Philadelphia.
“That’s the basic message in all this.”

theorem and quite another to demon-

I t's one thing to prove a mathematical
strate its reality in a physical situation.
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When physicist S. Sridhar of North-
eastern University in Boston heard about
the Gordon-Webb-Wolpert discovery,
he decided to put it to an experimental
test — and he had just the right kind of
setup to do the necessary experiment.

Sridhar and his coworkers had been
investigating aspects of quantum chaos
by looking at the patterns created when
microwaves bounce around inside thin
metal enclosures of various shapes. The
same technique could be used to identify
normal modes, with microwaves standing
in for sound waves and severely squashed
cavities standing in for membranes.

To test the drum theorem, the re-
searchers constructed two cavities corre-
sponding to one of the pairs of shapes dis-
covered by Gordon and her colleagues.
Fabricated from copper and having eight
flat sides, each angular enclosure was
nearly 8 centimeters long and less than 6
millimeters thick.

Sending in microwaves through a tiny
opening and measuring their strength
over a range of frequencies at another
location enabled the researchers to estab-
lish the frequencies of the normal modes
of each cavity.

Remarkably, the frequencies present
in both spectra were practically identi-
cal. Any discrepancies between the spec-
tra could be attributed to slight imper-
fections introduced during assembly of
the enclosures.

“The day we built this [apparatus]
and put the two [spectral] traces on the
screen and they lined up so well, I was in
awe,” Sridhar says. “l had never seen
anything like this in many years of build-
ing cavities.”

“It really was amazing that they could
do it,” DeTurck comments.

The experiment also provided informa-
tion that was unavailable mathematically.
Although mathematicians had proved
that two differently shaped drums can
have identical spectra, they couldn’t
work out the actual frequencies making
up such a spectrum. The presence of
sharp corners and other special features
in the geometries made it too hard to
solve the associated wave equation.

“This interplay of mathematics and
physics is beneficial to both fields,” Srid-
har and his colleagues concluded in a
report published in the April 4 PHYsICAL
RevViEw LETTERS. “While the experiments
have provided a satisfying physical basis
for the mathematical results, the new
ideas from mathematics which have been
studied here may have wide and unfore-
seen impact on physical problems.”

similar link between mathematical
Aresults and physical experiments

has proved valuable in under-
standing peculiarities in the behavior of
drums with extremely crinkled bound-
aries and drums having membranes
punctured by an infinite array of holes.
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Researchers have long suspected that
such fractal boundaries and membranes
can drastically alter the types of excita-
tions possible. In 1991, Bernard Sapoval
and his coworkers at the Ecole Polytech-
nique in Palaiseau, France, tested this
notion experimentally.

The researchers cut a complicated pat-
tern — resembling a cruciform snow-
flake — out of a stainless steel sheet,
stretching a soap or plastic film across
the opening as a membrane. A loudspeak-
er mounted above the “drum” excited the
film, causing it to vibrate.

Sapoval and his coworkers observed
that the membrane’s convoluted bound-
ary strongly damped the excitations,
soaking up their energy. Moreover, wave-
forms on such a surface showed extreme
changes in slope at various locations
along the membrane’s rim.

But these results apply to a complicated
shape that is not really a fractal in the math-
ematical sense. A true fractal would have
a never-ending sequence of tinier and
tinier indentations — something not
physically realizable.

This computer-
generated
illustration
displays one of
the normal
modes of
vibration of a
drum having a
fractal boundary
approximating
the shape of a
Koch snowflake.

Taking a mathematical approach, Lap-
idus and his colleagues have explored
the characteristics of vibrations on mem-
branes with truly fractal boundaries, con-
centrating on a particular fractal shape
known as the Koch snowflake.

The mathematicians have proved sev-
eral theorems, including one establishing
that the slope of a membrane waveform
approaches infinity as one gets closer to
certain points along the rim. But many
conjectures remain unresolved, and new
questions keep coming up.

Pictures may provide some clues on
how to proceed. Lapidus is now working
with graduate student Cheryl A. Griffith
and coworkers Robert Renka and John W.
Neuberger of the University of North
Texas in Denton to display normal-mode
vibrations of a drum with a fractal bound-
ary on the computer screen.

The colorful images created so far
illustrate vividly the dramatically frilled
edges of the waveforms created on frac-
tal-bounded membranes.

However, as in a physical experiment,

a computer can only approximate a frac-
tal. It cannot render it in every detail.
“We have to be very careful in interpret-
ing the pictures,” Lapidus cautions.

ne intriguing facet of fractal drums
o is what they may say about the

apparent prevalence of irregular,
fractal-like forms in nature. For example,
waves can eat away shores to create deep
bays and scalloped beaches. At the same
time, deeply indented coastlines may sur-
vive because they can effectively dampen
sea waves, thus suffering less erosion.

“In a nutshell, we observe an irregular
(‘fractal”) coastline because it has a
much more stable shape than a smooth
one,” Lapidus says. This could account
for the efficacy of disordered heaps of
various-size rocks as breakwaters.

There may also be links between this
type of behavior and quantum states in
microscopically irregular structures such
as porous silicon or in certain types of
glass. Sridhar, for example, has looked
at the effect of rough surfaces in his

microwave cavities.

“We found interesting effects for the
spectrum when the surface is rough,”
Sridhar says. “We saw manifestations of
[energy] gaps, just as you would in a sol-
id-state system.”

From a mathematical point of view,
the relation of geometrical shape to
spectrum remains far from completely
understood, with more unsolved prob-
lems than answers. In many ways, the
detective work of deciphering what geo-
metrical information a spectrum holds
has barely begun.

“The real problem is to what extent
you can reconstruct the medium from
the effect,” says DeTurck. In the case of
drums, what can one tell about these
objects from measurements of their
characteristic frequencies?

In the orchestra of the mind, it may be
possible to identify the distinctively
muted, strained tones of a fractal tam-
bourine, but there is no escaping a deli-
cious ambiguity in the beating of differ-
ent drums. O
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