Keeping the Beat

Perfect synchrony in arrays of clocks
and other oscillators

Christiaan Huygens was confined to

his room for a few days. The Dutch
physicist whiled away the hours of his
confinement by closely observing and
pondering the remarkable behavior of
two pendulum clocks he had recently
constructed.

Huygens noticed that the pendulums
of the two suspended clocks, hanging
side by side from a common support,
were swinging in perfect synchrony.
When one pendulum swung to the left,
the other went to the right. The pendu-
lums remained precisely in opposite
phase for as long as he cared to watch.

His curiosity piqued, Huygens began
to experiment. He deliberately disturbed
the motion of one pendulum so that it no
longer mirrored the other’s movements.
Within half an hour, the two pendulums
were back in opposite-phase synchrony.

Huygens suspected that the clocks
were somehow influencing each other,
perhaps through air currents or vibra-
tions of their common support. To test
this notion, he moved the clocks to
opposite sides of the room. The clocks
gradually fell out of step, with one clock
losing 5 seconds a day compared to the
other. The two pendulums no longer
swung at exactly the same frequency or
in opposite phase.

Conversely, as long as the two clocks
interacted in some way not yet fully
determined, they kept precisely the
same time, even though they were not
identical. In general terms, what Huygens
had serendipitously discovered was a
phenomenon that came to be known as
the mutual synchronization of coupled
oscillators.

utual synchronization can occur
M in rows of pendulums (SN:

12/9/95, p. 389), certain types of
electrical circuits, and arrays of super-
conducting devices known as Josephson
junctions. Similar patterns of behavior
also appear in the synchronized flashes
displayed by some species of fireflies
(SN: 8/31/91, p. 136), the chorusing of
crickets, the coordinated beating of
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rhythm-setting cells in the heart, and
voltage fluctuations in networks of neu-
rons in the brain (SN: 1/18/92, p. 39).

In each case, nonidentical oscillators
interact to beat with a single rhythm.
“This phenomenon lets a community be a
more precise oscillator than you could
ever expect to get from the individual ele-
ments,” says Kurt Wiesenfeld of the Geor-
gia Institute of Technology in Atlanta.

In such groups, fast oscillators get
slowed down and slow ones get speeded
up to lock the entire ensemble into a
compromise rate.

“A lot of people are really interested in
understanding the physics of phase lock-
ing, and there’s a lot of physics to under-
stand,” says Samuel P. Benz of the
National Institute of Standards and Tech-
nology in Boulder, Colo.

Benz and his coworkers, for example,
take advantage of phase locking to en-
sure that large arrays of superconducting
Josephson junctions display voltage
oscillations of a well-defined frequency,
despite small differences among the indi-
vidual components. Such arrays are use-
ful as components of detectors of elec-
tromagnetic radiation in the submillime-
ter range—wavelengths of interest in
radioastronomy and atmospheric pollu-
tion monitoring.

ver the years, researchers have
Oformulated equations to capture

the essential features of individ-
ual oscillators, both physical o
and biological. With such mathe- 2
matical models, they have tried
to predict oscillator behavior in
a variety of settings, including
the conditions that lead to syn-
chronization.

Creating the right equations to
describe systems of oscillators
and then solving the equations to
make testable predictions has
proved a difficult, if not impossi-

A bend interrupts a series array
of Josephson junctions suitable
for equipment to maintain
voltage standards.

ble, task. Recently, researchers neatly
connected theory and experiment for one
interesting case.

Physicists Wiesenfeld and Pere Colet
of Georgia Tech, along with mathemati-
cian Steven H. Strogatz of Cornell Univer-
sity, uncovered a direct, previously un-
suspected link between the mathematics
describing a string of Josephson junc-
tions and a 1975 set of equations called
the Kuramoto model. The simple, solv-
able equations of this oscillator model
had elucidated some aspects of the
behavior of abstract coupled systems,
but originally it appeared to have no con-
nection with any realistic physical or bio-
logical system of oscillators.

“It was a solution waiting for a physical
realization,” Strogatz remarks.

By establishing the link, researchers
can now quantitatively predict under
what circumstances a row of Josephson
junctions can synchronize voltage fluctu-
ations and how well matched the individ-
ual devices must be in terms of their
physical characteristics in order to
become fully synchronized.

Wiesenfeld and his colleagues report-
ed these findings in the Jan. 15 PHYSICAL
REVIEW LETTERS.

University of Kyoto in Japan was
inspired to create his mathemati-
cal oscillator model by the work of
Arthur T. Winfree, now at the University

P hysicist Yoshiki Kuramoto of the
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This array of Josephson junction oscillators generates 0.16 milliwatt signals at a frequency of 240 gigahertz. Each black rectangle
represents a group of 24 Josephson junctions. :

of Arizona in Tucson. In 1967, Winfree
suggested that the onset of synchroniza-
tion in large populations of oscillators is
analogous to a phase transition, such as
the freezing of a liquid.

Initially, Winfree proposed, the oscilla-
tors behave incoherently, with each one
running at its natural frequency. When
the spread of frequencies among the oscil-
lators falls below a certain critical value,
the system spontaneously “freezes” into
synchrony.

Kuramoto came across Winfree's paper
in 1975, just as he was shifting his research
from the statistical physics of phase tran-
sitions to rhythmic phenomena such as
oscillating chemical reactions (SN: 7/1/89,
p. 6) and circadian clocks. “It had a great
impact on me,” Kuramoto says.

Having already worked out a coupled
oscillator model to account for some of
the swirling, cyclic patterns observed in a
chemical system known as the Belousov-
Zhabotinsky reaction, Kuramoto extend-
ed this mathematical framework to
incorporate Winfree’s ideas.

The result was a set of differential equa-
tions with two components. One term
describes what the oscillators do individ-
ually. Such an abstract oscillator can be
imagined as a point moving at a certain
rate along the circumference of a circle.
This oscillator has a phase (where the
point is in its cycle) and a period (how
long the point takes to go around).

A second term describes how these
oscillators influence each other to slow
down speeders and speed up slowpokes.
To make it possible to solve the full set of
equations, Kuramoto specified that
every oscillator interacts equally with
every other oscillator in the array, not
just its nearest neighbors.

Although the Kuramoto model did not
correspond to any particular physical or
biological system, it nonetheless became
an attractive test case on which theorists
could try out various hypotheses about
oscillator behavior.

“Whether [Kuramoto’s model] is applic-
able in any particular setting or not, you
really need to understand the different
kinds of behavior [displayed in this simple
model] before you can understand more
complicated things,” Wiesenfeld says.
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typical Josephson junction con-
Asists of two superconducting lay-

ers separated by a thin film of
insulating material. Because pairs of
electrons can tunnel quantum mechani-
cally through the insulating layer, a spo-
radic current can flow from one super-
conductor to the other, even when there
is no voltage difference between them.

By adding a battery to force a suffi-
ciently strong current through a Joseph-
son junction, one can cause the voltage
generated in the device to oscillate.
Under these conditions, a junction’s volt-
age oscillates at a frequency that de-
pends on such factors as the device's
area and composition. In an array, these
oscillators are connected and end up
oscillating together.

The great stability of this collective
oscillation frequency makes such arrays
valuable for maintaining the U.S. stan-
dard for the volt. Josephson junctions
can also be used to measure very small
electric currents and magnetic fields.

Both Wiesenfeld and Strogatz were
familiar with oscillator models in general
and the theory underlying the behavior
of Josephson junction oscillators in par-
ticular. With help from mathematician
Jim W. Swift of Northern Arizona Univer-
sity in Flagstaff, they began by figuring
out a way to simplify the Josephson
equations in a special case.

“It was then that we noticed the link,”
Wiesenfeld says. The junction oscillator
equations in that case were equivalent to
those of the Kuramoto model.

“Though people had studied Joseph-
son junctions since the 1970s, no one
had recognized the Kuramoto model in
this context before,” he notes.

researchers could use the known

solutions of the Kuramoto equa-
tions to predict how a string of similar,
but nonidentical, Josephson junction
oscillators becomes synchronized.

A system functioning according to
those equations would exhibit two transi-
tions as the current that is forced
through it changes. At first, the oscilla-
tors act independently. Then the system

This discovery meant that the
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shifts to an intermediate stage in which
the oscillators are partially synchronized.

“Oscillators near the middle of the fre-
quency distribution would be the first
ones to lock together,” Strogatz says. “A
small group of oscillators happens to get
synchronized, and it exerts a coherent
influence on the rest of the population
because it stands out above the back-
ground noise. So it recruits more oscilla-
tors, and you get a positive feedback
process.”

The second transition occurs at the
final stage, when the last stragglers are
locked into the group. “We can predict
where the two transitions occur and
what currents produce them,” Strogatz
emphasizes.

Kuramoto comments, “Until [ received]
a preprint of the Wiesenfeld paper, | had
not imagined that such a simple oscillator
model could find any physical counter-
part at such a quantitative level.”

The calculations also show that exper-
imenters should be able to test these
predictions with existing technology,
though no one has done so yet. In gener-
al, “Josephson junction arrays are excel-
lent experimental systems for studying
phase locking and related phenomena,”
Benz notes.

Now, Wiesenfeld and others are inves-
tigating whether the same conclusions
apply to mathematical models that more
completely describe Josephson junc-
tions, taking into account subtle electri-
cal effects in these circuits.

There is also great interest in the ques-
tion of how synchronization occurs in two-
dimensional grids rather than just rows of
Josephson junction oscillators. “That’s a
big open question,” Wiesenfeld says.

In this case, the assumption that every
oscillator interacts with every other
oscillator no longer applies. More compli-
cated patterns, such as spirals and vor-
tices of activity, come into play. Nonethe-
less, “I think that qualitatively similar
[transition] phenomena will be there,”
Wiesenfeld asserts.

Finally, “it still remains to be seen
whether any biological system is well
described by the Kuramoto model,” Stro-
gatz says. “But it’s nice that an application
for it was found in a physical system.” [
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