Clusters and D¢

New rules for

constructing a quasicrystal

is notably monotonous. One neat
row of atoms succeeds another at
regular intervals.

One can think of such an ordered sol-
id in terms of stacked building blocks.
The blocks of a particular crystal con-
sist of identical arrangements of atoms.
Constructing a crystal out of these unit
cells is much like laying bricks to build
awall.

Until 1984, scientists thought that all
ordered solids have such a simple, peri-
odic arrangement. .
Then, during at
project at the?
National Institute &
of Standards and
Technology in
Gaithersburg, Md.,
Dan Shechtman of
the Israel Institute
of Technology in
Haifa was shocked
to discover that
an aluminum-
manganese alloy,
which appeared
to be crystalline,
did not obey
the conventional
rules of crystal
structure (SN:
3/23/85, p. 188).

What set this
material apart
from normal crys-
tals was the spac-
ing of its rows

T he view from inside a typical crystal

of atoms. In-
stead of repeating
throughout the

structure at some
regular interval,
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The diffraction pattern obtained by firing
electrons at a small area of a quasi-
crystalline alloy shows spots, revealing that
the material has an orderly structure. The
number of spots in each concentric ring is
unusual, however, indicating that this
material doesn’t have the regularly
repeating structure of an ordinary crystal.

By IVARS PETERSON

atoms of this so-called quasicrystal were
spaced at either of two characteristic
intervals, in a fixed ratio. The atoms
appeared to be clustered in complex pat-
terns that led to an unusual geometric
arrangement.

Since Shechtman’s startling discovery,
researchers have synthesized a variety
of alloys with similar structures, which
they have grouped with the aluminum-
manganese alloy into a new class of
materials. They have also discovered
that some quasicrystalline alloys are
harder than crys-
talline materials
having the same
composition, some
have a higher re-
sistance to electrici-
ty at low tempera-
tures, and some
have surfaces that
are particularly
slippery.

Until recently,
however, materi-
als scientists could
not explain how the
atoms of these
quasicrystals could
assemble them-
selves into such
a complex arrange-
ment rather than
the regularly re-
peating pattern of
a crystal.

Now, physicists
Paul J. Steinhardt
of the University of
Pennsylvania in
Philadelphia and
Hyeong-Chai Jeong
of the University of
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Shechtman

Maryland in College Park have introduced
a novel mathematical model that may
shed light on the interactions responsible
for quasicrystal formation. Their model
requires only a single type of building
block for constructing a two-dimensional
quasicrystal.

Extended to three dimensions, this
approach could provide a simple, unified
picture of how both ordinary crystals
and quasicrystals form, Steinhardt con-
tends. The researchers report their find-
ings in the Aug. 1 NATURE.

ne convenient way to picture a

two-dimensional quasicrystal is as

an arrangement of structural units
spread across a surface, like tiles on a
bathroom floor. To get the nonrepeating
pattern characteristic of quasicrystals,
however, one can’t use tiles shaped like
squares or hexagons.

In 1974, mathematical physicist Roger
Penrose of the University of Oxford in
England discovered that he could con-
struct a nonperiodic tiling by using two
different tile shapes—a wide diamond
and a thin diamond—with special rules
for how neighboring tiles fit together. All
the pieces join neatly to cover a flat sur-
face, but the resulting pattern of tiles
doesn’t repeat itself at regular intervals.

The Penrose tiling embodied several
features characteristic of quasicrystal
structures. When quasicrystals were dis-
covered, some researchers immediately
looked to Penrose tiling as a simple model
of how quasicrystal atoms might be
arranged. It suggested that the atoms of a
quasicrystal organize themselves into two
types of clusters, which act as building
blocks, rather than into the single type of
block typical of conventional crystals.
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A Penrose tiling is composed of fat and thin diamond-shaped
tiles (left). To generate a nonperiodic tiling (right), pairs of
adjacent tiles must join together in specific ways. Hence, the
tiles are painted with lines corresponding to these matching
rules. Two tiles can join edge-to-edge only if the lines match

across the boundary.

The trouble was that a Penrose tiling
requires a set of rules that specify how
the tiles must be placed. The tiles,
marked for example with lines or arrows,
must abut certain edges to yield the final
pattern.

The scientists can’t imagine how
clusters of atoms in quasicrystals could
interact in ways that mimic the compli-
cated matching rules. Moreover, it’s dif-
ficult for anyone to piece together, say,
100 Penrose tiles without error (SN:
7/16/88, p. 42). Yet perfect quasicrys-
tals made up of 10* atoms can form in
minutes.

These inade- =
quacies of the #
original Pen-
rose tiling model
prompted search-
es for alternative
ways of describ-
ing quasicrystals.
One possibility
involved replac-
ing Penrose’s two
shapes of dia-
mond tiles with a
single type of
building block.
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A nonperiodic tiling can be generated by
overlapping a single type of decagon tile

(left top). A tile can overlap its neighbor if
the overlapping regions have the same

one would get
'with bathroom
tiles was not a
problem, because
her mathematical
tiles were only
two-dimensional.

When Stein-
hardt first heard
of Gummelt’s pat-
tern, he was skep-
tical. “It wasn’t
clear from her
paper that the con-
struction actually
worked,” Stein-
hardt says.

However, he
and Jeong ended
up proving Gum-
melt correct, and
they worked out
a simpler version
of her proof
that illuminated
the link between
her decagons and Penrose’s diamond
tiles. They then proved that her over-
lap rules are equivalent to Penrose’s
matching rules.

These results show that the atomic
structure of quasicrystals and ordinary
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crystals can be understood in terms of a

single repeating unit, Steinhardt says.

A sensible way of interpreting the over-
lap rules in physical terms is as a sharing
of atoms by neighboring clusters, rather
than as two clusters penetrating into
each other, he adds. Such a possibility is
consistent with experimental data on the
positions of clustered atoms in qua-

sicrystals.

teinhardt
and Jeong
also found

a second, inde-
pendent way of
constructing a
Penrose tiling suit-
able for modeling
a quasicrystal. It
eliminates the need
for matching or
overlap rules.
The physicists
identified a small

Mathematician
Petra Gummelt of
the University of
Greifswald in Ger-
many was one of
the first to come
up with such a
scheme. She used
a 10-sided, or deca-
gonal, tile as her
basic  structural

colors (left middle). Such a covering of the
plane with decagons (right) can be
transformed into a Penrose tiling by
inscribing a fat Penrose diamond (left
bottom) inside each decagon. The arrows
on the diamond are an alternative to lines
as a way of specifying the Penrose
matching rules. Adjacent tiles must have
arrows of the same direction and number
on adjoining edges.

cluster of adja-
cent tiles that
appears again and
again within the
Penrose tiling pat-
tern. These clus-
ters overlap, shar-
ing tiles with their
neighbors. The
pattern that con-
tains the maxi-

unit. Rather than abutting each other
like the Penrose tiles, these decagons
overlap in specific ways. The lumpiness
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mum number of such overlapping clus-
ters automatically generates a nonperi-
odic tiling.
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“Maximizing the density of a chosen
cluster of tiles suffices to produce a quasi-
periodic tiling,” the researchers say. The
decagon scheme also meets this criterion.

This finding suggests that when atoms
settle into clusters that have the lowest
possible energy, the natural tendency is
to form clusters of overlapping clusters.
This lowers the energy further by maxi-
mizing the number of low-energy clus-
ters present. “Cluster overlap plays an
important part in this energy minimiza-
tion,” Steinhardt says.

In ordinary crystals, no overlap occurs,
and the atomic unit cells pack into a
repeating pattern, which gives the struc-
ture minimum energy.

“If the clusters can share atoms and
have the proper geometry, then qua-
sicrystals form,” he notes. “The same
basic picture explains both crystals and
quasicrystals.”

These results for two-dimensional
nonperiodic tilings apply directly to
certain stacked materials that re-
searchers have synthesized. In this
case, the quasicrystalline geometry is
restricted to thin layers. No one has
yet extended the ideas to three-dimen-
sional structures.

In this Penrose tiling, the small cluster of
tiles outlined in red (lower right) appears
in different places in the tiling. The
colored patch in the middle illustrates
the characteristically high density of
overlap of the clusters.

“If these principles can be estab-
lished [in three dimensions], they may
enable the reliable prediction of new
quasicrystals,” Steinhardt and Jeong
conclude.

With a better understanding of why
quasicrystals form, materials scientists
may achieve improved control of the
composition and structure of these
materials, potentially leading to a variety

of practical applications. O
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