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a mathematician as “a device for
turning coffee into theorems.”

To Erdds, however, it wasn’t enough to
cobble together any old proof to estab-
lish the truth of a conjecture. He sub-
scribed to the notion that God has a
book containing all the theorems of
mathematics, together with their most
elegant and beautiful proofs. The goal of
mathematicians was to uncover these
sublime instances of logical reasoning.

When Erdos wanted to express partic-
ular appreciation of a proof, he would
exclaim, “This is one from the book!”

One result unlikely to qualify for “the
book™ is last fall's proof of the so-called
Robbins conjecture, which concerns an
aspect of the basic rules of logic. None-
theless, the proof is noteworthy because
it was found by a computer program,
succeeding spectacularly where mathe-
maticians had failed.

Originally proposed in the 1930s by
Herbert Robbins, now at Rutgers Univer-
sity in New Brunswick, N.J., the problem
had stumped everyone who tackled it
over the years. It finally succumbed to a
computer program designed to reason in
a general way rather than a program
designed to solve a particular problem,
whether an equation or the moves of a
chess game.

Called EQP for “equational prover,” the
automated reasoning software was
developed by computer scientist William
McCune of the Argonne National Labora-
tory in lllinois.

“l was surprised that the problem
finally yielded to the program because
some powerful minds had tried to solve
it and hadn’t succeeded,” says mathe-
matician Larry Wos, a colleague of
McCune’s at Argonne. “It’s an impressive
result. We’ve made a lot of progress in

T he late Paul Erdds liked to describe
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automated theorem proving in the last
few years.”

“It’s a real breakthrough,” says mathe-
matician Stanley N. Burris of the Univer-
sity of Waterloo in Ontario. “l had no
expectations that a proof would emerge
at this time.”

McCune’s computer-generated proof
is to be published in a future issue of the
JOURNAL OF AUTOMATED REASONING.

omputers are not new to the busi-
c ness of proving theorems. In the

past, however, they generally
served as bookkeepers or assistants to
check the large number of special cases
needed to establish a theorem (SN:
12/24&31/88, p. 406). Mathematicians or
computer scientists outlined the neces-
sary steps, wrote the special-purpose
software, and specified the calculations
required for a proof.

“What we do is quite different,”
McCune says. Though the computer’s
search has constraints, neither the path
to a result nor the ultimate outcome is
determined beforehand. Indeed, because
typically no one knows any route to a
solution, the search can’t be guided in a
meaningful way.

Wos and his coworkers began develop-
ing software for automated reasoning in
the 1960s. They focused on how to de-
scribe a mathematical problem in terms
that a computer can handle and how to
get it to prove theorems by drawing con-
clusions that follow inevitably and logi-
cally from given postulates, or axioms.

“We never tried to imitate what people
do,” Wos insists.

The idea was to give an automated rea-
soning system the statement of a conjec-
ture along with a few rules of thumb con-
straining the search among the infinite
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number of possible logical paths to a
proof, then allow it to proceed on its
own.

Advances came in the form of im-
proved strategies for keeping the com-
puter from getting entangled in lengthy
chains of reasoning that apparently led
nowhere. Those improvements, along
with faster computers and better soft-
ware engineering, eventually produced
an agile reasoning system called Otter,
aimed at questions in abstract algebra
and formal logic.

Using Otter, McCune and his cowork-
ers have in recent years solved a wide
variety of mathematical problems, gener-
ating original proofs of theorems in logic,
algebraic geometry, group theory, and
other areas of mathematics.

A few years ago, McCune decided to
make a fresh start and develop a “daugh-
ter of Otter,” incorporating techniques
and strategies that researchers had
found useful while experimenting with
Otter during the previous decade. “Otter
was just getting too big and too patched-
up,” McCune explains. “l wanted a new
program that was easier to modify to try
things out.”

The result was EQP. The program
incorporated a number of strategies for
selecting possible search paths, includ-
ing simply following the path defined by
the smallest equation or formula at cer-
tain steps or side-stepping expressions
containing more than, say, 100 logical
relationships.

™

and the program succeeded in prov-
ing, sometimes for the first time, sev-
eral theorems of special interest to a
few logicians and other experts. These
results, however, were of limited value to

l nitial tests of EQP were encouraging,
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most mathematicians.

“The trouble was that [McCune and
his coworkers] had never really done a
mainstream problem of sufficiently wide
interest,” Burris remarks. Until that hap-
pened, “mathematicians would have no
appreciation of how powerful automated
theorem proving could be.”

As a benchmark test of his system,
McCune turned to the Robbins conjec-
ture, which states that a set of three
equations in logic is equivalent to a
Boolean algebra (see box). In other
words, the problem is to determine
whether this particular set of equations
incorporates the basic laws of Boolean
logic, which specify the different ways in
which collections of objects can be com-
bined or manipulated using logic opera-
tions such as “and,” “or,” and “not.” Such
logic underlies the workings of today’s
digital computers and is often used to
facilitate database searches.

Robbins himself worked on the prob-
lem, and it was later taken up by others,
including the late Alfred Tarski, a promi-
nent logician at the University of Califor-
nia, Berkeley. When Tarski failed to make
any headway, he handed the problem
out as a challenge to graduate students
and visitors.

Wos first came across the problem in
1979, when he helped a student develop
a novel way of attacking it by working
backwards—that is, by finding condi-
tions that, if true, would prove the theo-
rem. That promising start, however, did
not lead to an immediate proof.

At the same time, the problem had
characteristics ideal for an automated
attack. Embodied in just three equations,
the Robbins conjecture could be stated
succinctly in a form a computer could
understand. Moreover, researchers could
identify a number of conditions that, if
true, would each point to a complete
proof.

“We tried it many times using Otter
and other programs,” Wos says. No luck.

Last fall, McCune’s EQP was ready for
a new challenge. McCune let the prover
software grapple continuously with the
Robbins conjecture. He checked the
computer every day for progress.

On the eighth day, the computer found
the answer and stopped. It had proved
that the Robbins conjecture is true.

consisted of a cryptic chain of

lengthy, practically unreadable
statements of logic. McCune then refined
EQP’s procedures to obtain somewhat
more streamlined proofs.

In the meantime, several mathemati-
cians independently checked the com-
puter proof and found it correct. Burris,
for one, converted the proof’s long state-
ments into simpler forms that could be
more readily understood by humans. “I
ended up with a lot of little equations,”

Fresh out of the computer, the proof
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he says. “You could easily sit on a bus
and go through the hundred or so steps
of the proof.”

Philosophy graduate student Branden
E. Fitelson of the University of Wiscon-
sin-Madison also worked through the
result. “It’s a very complicated proof, not
at all elegant or conceptual,” he com-
ments. “It’s a perfect example of the type
of proof that a machine can find but we
can’t because of its complexity.”

EQP’s success raises some interesting
questions about mathematical creativity.
If a mathematician had proved the con-
jecture, the achievement would have
been heralded as a significant accom-
plishment. Yet it’s highly unlikely that a
mathematician would have come up with
the kind of proof that EQP found.

At the same time, mathematicians gen-
erally have no way of telling before-
hand—just by looking at a problem or a
conjecture—what kind of attack will sub-
due it. In fact, one of the attractions of
the Robbins conjecture was that it
looked vulnerable to techniques mathe-
maticians had used to prove similar the-
orems, differing only in what seemed like
minor details.

“There’s no general theory of when
[various methods] are not going to
work,” Fitelson says. “That makes life
interesting, but it’s also hard to predict
how things are going to work out.”

No one knows whether the computer
proof generated by EQP represents a
fluke success or the first of many tri-
umphs.

“That’s something we’ll be able to
judge only in hindsight,” Burris says.
“Though we have strong theorem
provers, we don't yet know what power
is required to be really competitive with
human beings.”

Nonetheless, he adds, “we now know
[automated theorem proving] can do
something significant, and we didn’t
know that a year ago.”

cCune, Wos, and others are tak-
M ing a closer look at EQP’s perfor-

mance to see if they can learn
something that could help with compara-
ble problems. “What was it doing during
those 8 days?” Wos wonders. “Is there
some kind of strategy that would have
tightened up the reasoning?”

The researchers are also interested in
extending the kind of deductive reason-
ing an automated theorem prover can
apply from relatively simple logical rela-
tionships involving equality to more
complicated expressions. They would
like to introduce mathematical induc-
tion, which would allow the computer to
make inferences.

“Our programs do not learn, do not
make judgments, and they do not invent
concepts,” Wos notes. Nonetheless, it
may be possible to program them to be
self-analytical—to recognize in a mechan-
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ical sense when searches are not going
well and to shift strategies.

McCune and Wos are also trying to
interest mathematicians in suggesting
problems that could be tried out on EQP
or Otter. McCune, for example, is already
working with R. Padmanabhan of the Uni-
versity of Manitoba in Winnipeg, using
reasoning software to establish a large
number of simple, unproven conjectures
as part of a larger effort.

“Those conjectures are the kind of
thing that might take a mathematician an
hour to do by hand but only a few sec-
onds with a theorem prover,” McCune
says.

Wos and McCune envision offering
mathematicians the option of using a
computer to free them from the drudgery
of finding proofs, allowing them to spend
more time on harder, more interesting
problems.

“Automated reasoning could comple-
ment your reasoning, so you could free-
lance more and use your intuition more,”
Wos argues.

Programs such as Otter and EQP
already work well in specialized areas of
pure mathematics, such as the theory of
algebraic systems. “I think that comput-
er-generated proofs will have a signifi-
cant influence in the near future [in those
fields],” says mathematician Kenneth
Kunen of the University of Wisconsin-
Madison.

Similar approaches could help engi-
neers design circuits or allow computer
programmers to verify the correctness
of their software. Indeed, research
groups throughout the world are work-
ing on such applications of automated
reasoning.

Computers have yet to come up with a
proof that belongs in “the book,” and
they can’t turn coffee into theorems.
However, the power of theorem-proving
programs continues to increase.

“Can machines reason at the same lev-
el as humans?” Burris asks. “In the long
run, | would bet on it, but it’s unlikely I'll
see it in my lifetime.” =

Boolean logic

Boolean algebra is a mathematical
model of some of the basic rules of
logic. It includes such laws as “for any
proposition P, the negation of the
negation of P means the same thing as
P” or “for any two propositions P, Q,
the conjunction of P and Q is false if
and only if one or both of them is
false.”

The Robbins problem is equivalent
to proving that the equation
not(not(P)) = P can be derived from
the following three equations:

PorQ=QorP;
(PorQ)orR=Por(QorR);
not(not(P or Q) or not(P or not(Q)))

=P
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