Hiding In Lattices

An improved mathematical strategy for

ending a message over the Inter-
Snet is like mailing a postcard. It
can be read by anyone.

Protecting sensitive information—
whether a credit card number, a pass-
word, or other data—requires encrypting
the message so that no eavesdropper or
thief can read the contents in transit.
Indeed, many online retailers now use sys-
tems that routinely encrypt any informa-
tion a customer enters to order a product.

In general, the hiding
is accomplished in such
a way that breaking the
code involves solving =
an extraordinarily diffi-
cult mathematical prob-
lem—one so hard that
even a thief with access
to the world’s most
powerful supercomput-
ers would fail.

For instance, it's easy
to multiply two num-
bers. It’s considerably
more difficult, given that
product, to work out
what numbers were
multiplied together to
generate it. Determining
that 57,814,193 is the
product of the two =
prime numbers 7,079
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making the resulting secret message vul-
nerable to attack.

Now, Mikloés Ajtai and Cynthia Dwork
of the IBM Almaden Research Center in
San Jose, Calif., have come up with an
alternative mathematical basis for pro-
tecting confidential information. More-
over, they can prove that breaking a ran-
domly generated instance of their new
cryptosystem is equivalent to working
out the hardest possible case.
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tosystem at the Association for Comput-
ing Machinery’s Symposium on Theory
of Computing, held earlier this year in El
Paso, Texas.

onventional cryptography typical-

ly requires a key—a string of num-
bers—shared by both sender and
recipient. The key can then be used in a
series of mathematical operations to
scramble the digits rep-

resenting a message.

Deciphering the mes-

sage involves going

through the same pro-

cedure in reverse, using

the same key (SN:

2/1/97, p. 78).

The trouble with such
a scheme is that the
two parties must ini-
tially communicate in
some way to establish
the shared key. Such
exchanges are cumber-
some and potentially
insecure, especially

B when keys are lengthy

and regularly changed

to increase security

(SN: 2/10/96, p. 90).
Public key cryptogra-

and 8,167 requires much phy offers a way around
more computer time The Ajtai-Dwork cryptosystem involves the use of randomly oriented lattices  the key exchange prob-
than multiplying the two  in which the rows are much farther apart than points along a row. Encoding  lem. This method
primes. 0 means finding a point close to a hyperplane without knowing where the requires the use of a

The belief that factor-
ing huge numbers is
intrinsically difficult
underlies one widely used cryptosystem.
Cracking such codes typically requires
factoring numbers that are 200 or more
digits long (SN: 5/14/94, p. 308).

However, the factoring approach isn’t
completely foolproof. Computer scien-
tists can’t yet guarantee that no one will
ever discover a mathematical shortcut
that makes factoring quick and easy on a
computer.

Moreover, certain numbers turn out to
be particularly easy to factor. There’s
always the danger of inadvertently pick-
ing one of these numbers for encryption,
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hyperplanes are. In this two-dimensional example of a lattice, the
hyperplanes are lines, and two Os are encoded as points A and B.

In other words, there are no “easy”
exceptions that could be exploited to
crack the code. “You can’t get unlucky
and make a bad choice,” Dwork says.

The new scheme represents a poten-
tially useful addition to the small handful
of cryptosystems now in use. “It’'s an
interesting and important development,”
says Andrew M. Odlyzko of AT&T
Labs-Research in Florham Park, N.J. “Peo-
ple would rather not put all their trust in
systems that could fall if a single mathe-
matical problem were to be solved.”

Ajtai and Dwork described their cryp-
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pair of complementary
keys instead of a single,
shared key. One key,
which is publicly available, is used to
encrypt information; the other key, known
only to the intended recipient, is used to
decipher the message. Thus, what the
public key does, only the secret key can
undo.

The security of this type of cryptosys-
tem rests on finding a mathematical proce-
dure to generate two complementary keys
such that knowing just the public key and
the encryption method is not enough to
deduce the private key. The mathematical
operation must act like a trap that’s much
easier to fall into than to escape.
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The presumed difficulty of factoring
provides such a trapdoor in the RSA
cryptosystem, invented by Ronald L.
Rivest of the Massachusetts Institute of
Technology, Adi Shamir of the Weizmann
Institute of Science in Rehovot, Israel,
and Leonard M. Adleman of the Universi-
ty of Southern California in Los Angeles.
The secret key consists of the two prime
numbers that were multiplied together
to create the lengthier public key.

The sender of an electronic message
uses software that automatically scram-
bles the information by a procedure
involving the publicly known numerical
key. The recipient’s software decrypts
the message by using the two prime fac-
tors of its private key. The only way an
eavesdropper can read an intercepted
message is by factoring the public key.

Mathematicians and computer scien-
tists have also proposed public key cryp-
tosystems based on mathematical opera-
tions other than factoring. One .
popular approach involves so- ¢
called discrete logarithms.

Another method, based on a
mathematical puzzle known as
the knapsack problem, initially
looked promising, but re-
searchers discovered serious
loopholes in many of the differ-
ent types of knapsack cryp-
tosystems that had been con-
structed (SN: 11/24/84, p. 330).

The limited number of
options available has long been
a source of concern among
security experts, especially as
computers get faster and
researchers come up with
improved procedures for fac-
toring.

One way to define the position of a point in a lattice is to
draw a vector (arrow) from the origin to the point. In this
two-dimensional example, it’s easy to find the point
closest to the origin and, hence, identify the shortest
vector. In higher dimensions, however, the problem is
much more difficult. In lattices in which the rows are
much farther apart than points along a row, finding the
“unique” shortest vector is also an extremely difficult
computational problem.

he work of Ajtai and

Dwork introduces a new

approach to public key
cryptography—one based on
mathematical constructs called
lattices.

A lattice is a regular array of
points, each one specified by a
set of coordinates. Two coordinates
would designate the location of a point in
a two-dimensional lattice; three coordi-
nates, a point in a three-dimensional lat-
tice; four coordinates, a point in a four-
dimensional lattice; and so on.

The two- and three-dimensional cases
are easy to visualize as orderly arrange-
ments of dots on a sheet of paper or
points distributed in space like the
atoms of a crystal. By looking at such
arrays from different angles, one can see
that the points fall into natural group-
ings—sets of parallel lines or sets of par-
allel planes. In higher dimensions, such
features are called hyperplanes.

In the Ajtai-Dwork cryptosystem, a
particular set of hidden hyperplanes
constitutes the private key. The public
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key is a method of generating points that
are guaranteed to be near one of those
hyperplanes without revealing where
any of the hyperplanes is. Even generat-
ing a large number of points isn’t suffi-
cient to unveil the hyperplanes they
trace out.

To send an encrypted message, the
user provides the information as a string
of 1s and 0s. Software encrypts the mes-
sage one bit at a time. If the bit is 0, the
computer uses the public key to find a
point whose coordinates place it very
near one of the hidden hyperplanes. If
the bit is 1, the computer comes up with
a random point somewhere in the high-
dimensional space of the lattice.

The private key allows the recipient to
determine the distance of each point
from the nearest hyperplane. If the dis-
tance is sufficiently small, the point is
decrypted to represent 0. Otherwise, the
point represents 1.

There is a tiny chance of error. Once in
a long while, a randomly selected point
can land close to a hyperplane, so 1 may
occasionally be decrypted as 0.

“What we proved, roughly, is that you
can’t distinguish points that are near the
hyperplanes from points that are far
from the hyperplanes if you don’t al-
ready know where those hyperplanes
are,” Dwork says.

The security of this system rests on the
computational difficulty of finding, in
effect, the “unique” shortest line segment
(or vector) that connects any pair of
points in a given lattice. That’s easy to do
in two or three dimensions. However,
there’s no quick way of finding the short-
est vector in, say, a 100-dimensional lat-
tice, because the number of possible

SCIENCE NEWS, VOL. 152

pairs of points that need to be checked
becomes exponentially large.

In the Ajtai-Dwork cryptosystem, de-
ducing the private key to find the hyper-
planes and decipher a message implies
the ability to solve the shortest-vector
problem in high dimensions—something
that has so far proved extremely difficult
to do.

The researchers also proved that break-
ing a randomly generated instance of their
cryptosystem—one that uses a random-
ly generated set of hyperplanes—is as
hard as solving the hardest possible
case. Thus, each key is equally difficult
to crack.

In effect, our scheme “is more secure
than any existing system,” Ajtai says.

t present, the cryptosystem devel-

Aoped by Ajtai and Dwork remains

more a mathematical exercise

than a practical reality. “Quite

a bit of work would be

required to make the scheme
practical,” Odlyzko says.

In its current form, for
example, the encryption
process generates an encod-
ed message that is consider-
ably longer than the original
message. “We need to make
the system more efficient,
and we have ideas on how to
do that,” Ajtai says.

Ajtai and Dwork are also
checking for loopholes and
exploring ways to fine-tune
their scheme. “It’s possible
that the system may be
secure even for small dimen-
sions,” Dwork says.

Other researchers are study-
ing the cryptographic implica-
tions of these and related find-
ings. For one thing, some key
mathematical results obtained
by Ajtai last year may help
revive interest in knapsack
cryptosystems by suggesting
ways to bulletproof those
schemes.

“No one yet knows how to
prove that any of the underlying prob-
lems in use today is absolutely impossi-
ble to solve,” Ajtai remarks. “Until that
happens, the best we can do is to show
that randomly generated instances of the
new cryptosystem are as hard to crack as
the hardest instances of the underlying
problem.”

Dwork and Ajtai also see possible
applications of their technique in gener-
ating random numbers on a computer
and perhaps for creating a digital signa-
ture, which certifies that an electronic
document truly belongs to the stated
author (SN: 9/7/91, p. 148).

Cryptographers now have a new math-
ematical field on which to exercise their
schemes. O
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