working with wax and fashioning
elegant, symmetrical structures.

Gorging themselves on honey, young
worker bees slowly excrete slivers of wax,
each fleck about the size of a pinhead.
Other workers harvest these tiny wax
scales, then carefully position and mold
them to assemble a vertical comb of six-
sided, or hexagonal, cells. The bees clus-
ter in large numbers, maintaining a hive
temperature of 35°C, which keeps the
wax firm but malleable during cell con-
struction.

This energetic, piecemeal activity pro-
duces a strong, remarkably precise struc-
ture. Each wax partition, less than 0.1
millimeter thick, is fashioned to a toler-
ance of 0.002 mm. Moreover, the cell
walls all stand at the correct 120° angle
with respect to one another to form a lat-
tice of regular hexagons.

Observers throughout recorded histo-
ry have marveled at the hexagonal pat-
tern of the honeybee’s elaborate storage
system. More than 2,000 years ago, Greek
scholars commented on how bees appar-
ently possess “a certain geometrical fore-
thought” in achieving just the right type
of enclosure to hold honey efficiently. In
the 19th century, Charles Darwin de-
scribed the honeycomb as a masterpiece
of engineering that is “absolutely perfect

H oneybees know a thing or two about
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The honeybee’s storage system consists of an array of hexagonal cells precisely constructed from wax.

in economising labour and wax.”

Biologists assume that bees minimize
the amount of wax they use to build their
combs. But is a grid made up of regular
hexagons indeed the best possible choice?
What if the walls were curved rather than
flat, for example?

Mathematician Thomas C. Hales of the
University of Michigan at Ann Arbor has
now formulated a proof of the so-called
honeycomb conjecture, which holds
that a hexagonal grid represents the best
way to divide a surface into regions of
equal area with the least total perimeter.
Hales announced the feat last month and
posted his proof on the Internet at
http://www.math.lsa.umich.edu/~hales/.

Although widely believed and often
asserted as fact, this conjecture has
long eluded proof, says Frank Morgan of
Williams College in Williamstown, Mass.
Hales’ proof “looks right to me,” he com-
ments, “although I have not checked
every detail.”

Last year, Hales proved Johannes Kep-
ler's conjecture that the arrangement
of the familiar piles of neatly stacked
oranges at a supermarket represents the
best way to pack identical spheres tight-
ly (SN: 8/15/98, p. 103).

If Hales’ proofs of the honeycomb and
Kepler conjectures stand the test of time,
“it’s a remarkable double achievement,”
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says physicist Denis Weaire of Trinity
College Dublin in Ireland.

Pappus of Alexandria noted in the

fourth century A.D. how bees, pos-
sessing a divine sense of symmetry, had
as their mission the fashioning of honey-
combs without any cracks through which
that wonderful nectar known as honey
could be lost. In his mathematical analy-
sis, he focused on the hexagonal arrange-
ment of cells.

Although honeycomb cells are three-
dimensional structures, each cell is uni-
form in the direction perpendicular to its
base. Hence, its hexagonal cross section
matters more than other factors in calcu-
lating how much wax it takes to con-
struct a comb.

The mathematicians’ honeycomb con-
jecture therefore concerns a two-dimen-
sional pattern—as if bees were creating a
grid for laying out tiles to cover an infi-
nitely wide bathroom floor.

Mathematicians of ancient Greece
asked what choices bees might have if
they wanted to divide a flat surface into
identical, equal-sided cells. Only three
regular polygons pack together snugly
without leaving gaps: equilateral tri-
angles, squares, and regular hexagons.

In an essay on the “sagacity of bees,”
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Other polygons, such as pentagons and
octagons, will not fit together without
leaving spaces between the cells.

The Greeks asserted that if the same
quantity of wax were used for the con-
struction of a single three-dimensional
version of the three candidate figures,
the hexagonal cell would hold more hon-
ey than a triangular or square cell. Equiv-
alently, the perimeter of a hexagonal cell
enclosing a given area is less than that of
a square or triangular cell enclosing the
same area.

Other possibilities for arrays of cells,
however, are conceivable. There’s no a
priori reason why the cells must all have
equal sides or identical shapes and sizes.
What about a crazy quilt of random poly-
gons or cells with curved rather than
straight sides?

Sorting through these alternative pat-
terns proved a formidable task for math-
ematicians.

It was relatively straightforward to estab-
lish that a regular hexagon, with equal
sides and 120° angles, has a smaller
perimeter than any other six-sided figure of
the same area. Moreover, polygons with
more sides than the hexagon, such as regu-
lar octagons, do better, and polygons with
fewer sides, such as squares, do worse.

In 1943, Hungarian mathematician
L. Fejes To6th proved the honeycomb
conjecture for the special case of filling
the plane with any mixture of straight-
sided polygons. In effect, Morgan says,
Toéth established that the average num-
ber of sides per cell in a plane-filling pat-
tern is at most six. Moreover, the advan-
tage of having some polygons with more
than six sides is less than the disadvan-
tage of having some polygons with fewer
sides. Under these conditions, the least-
perimeter way to enclose and separate
infinitely many regions of equal area is
the regular hexagonal grid of the honey-
comb.

What if cells were allowed to have
curved sides? T6th considered the ques-
tion and predicted that the best answer
is still a grid of regular hexagons. “Never-
theless, this conjecture has resisted all
attempts at proving it,” he commented.

In recent years, Morgan has refocused
attention on the honeycomb conjecture
and related questions, such as the most
economical way of packaging a pair of
identical volumes as double bubbles (SN:
8/12/95, p. 101). In the May TRANSACTIONS
OF THE AMERICAN MATHEMATICAL SOCIETY, he
outlined progress in proving the hexago-
nal honeycomb conjecture and its vari-
ants, and he suggested a possible route
to a proof.

With curved sides, the complication is
that a side that bulges out for one cell
must bulge in for its immediate neigh-
bor. Bulging out helps minimize the cell
perimeter, while bulging in hurts.

Hales proved that the advantage of
bulging out is less than the disadvantage
of bulging in. “The basic idea is quite sim-
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ple and elegant,” says John M. Sullivan of
the University of lllinois at Urbana-Cham-
paign. Hales” main result “shows that no
single cell can do better than a hexagon if
appropriately penalized for having more

Two possible structures for the closed
end of a honeycomb cell. Mathematician
L. Fejes Toth showed that an end cap
consisting of two hexagons and two
squares (top left) requires a little less
wax than the one honeybees make, with
three diamond-shaped, or rhombic,
panels (top right). A honeycomb consists
of two layers of such cells placed back
to back so that a chamber on one side is
offset from its partner on the other side
(bottom).

than six sides or outward curves.”
Therefore, straight-sided polygons work
better than curved ones, and regular hex-
agons are truly best of all.
Bees have that aspect of their honey-
comb structures down pat.

vertical, hexagonal grid, however. It

actually consists of two layers of
cells placed back to back. The cells
themselves are tilted upward at an angle
of about 13° from the horizontal—just
enough to prevent stored honey from
dripping out.

Instead of a flat bottom, each cell ends
in three four-sided, diamond-shaped pan-
els, meeting in a point like a pencil sharp-
ened with only three knife strokes. The
cells of the two layers are offset so the
center of a chamber on one side is the
corner of three adjacent cells on the oth-
er side. This allows the layers to inter-
lock like the bottoms of two egg cartons
fitted together. In the honeycomb, how-
ever, one layer of material serves as the
bottoms of two cells. In cross section, the
interface between the two layers has a
zigzag structure.

The angles of each diamond-shaped, or
rhombic, face of the cell bottom are 109.5°
and 70.5°. In the 18th century, mathemati-
cians proved that these particular angles
give the maximum volume for a three-

T here’s more to a honeycomb than a
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rhombus configuration.

In 1964, T6th discovered that a combi-
nation of two hexagons and two squares
does a little better than an end cap of
three rhombuses in terms of the efficient
use of wax. The difference, however, is
very small. “By building such cells, the
bees would save per cell less than 0.35
percent of the area of an opening (and a
much smaller percentage of the surface
area of a cell),” he concluded.

Several years ago, Weaire and his col-
league Robert Phelan experimented with
a liquid-air foam to test Téth’s mathemat-
ical model. They pumped equal-sized
bubbles, about 2 mm in diameter, of a de-
tergent solution between two glass plates
to generate a double layer.

The two layers of trapped bubbles
formed hexagonal patterns at the glass
plates. The interface between the two
layers adopted Téth'’s structure.

When Weaire and Phelan thickened the
bubble walls by adding more liquid, how-
ever, they unexpectedly found an abrupt
transition. When the walls reached a par-
ticular thickness, the interface suddenly
switched to the three-rhombus configura-
tion of a honeycomb.

The switch also occurs in the reverse
direction as liquid is removed.

So, honeybees may very well have found
the optimal design solution for the thicker
wax walls of their honeycomb cells.

For mathematicians, however, “many
questions remain open,” Morgan says.

In two dimensions, for example, mathe-
maticians can consider what happens
when they allow arrangements that in-
clude regions of several, intermingled
components or empty spaces between
cells. In three dimensions, the question of
what space-filling arrangement of cells of
equal size has the minimum surface area
is still not settled (SN: 3/5/94, p. 149).

“The strategies | developed for the Kep-
ler conjecture were very useful with the
honeycomb conjecture,” Hales says. “A
topic for future research might be to de-
termine to what extent [those methods)]
can be adapted to other optimization
problems.”

These are matters that concern not on-
ly mathematicians but also researchers
interested in the characteristics and be-
havior of fluids, bubbles, foams, crystals,
and a variety of biological structures,
from cell assemblages to plant tissue.

“Cell and tissue, shell and bone, leaf
and flower, are so many portions of mat-
ter, and it is obedience to the laws of
physics that their particles have been
moved, moulded and conformed,” D’Arcy
W. Thompson wrote in his celebrated
book On Growth and Form, first pub-
lished in 1917. “Their problems of form
are in the first instance mathematical
problems, their problems of growth are
essentially physical problems.”

The honeybee’s honeycomb fits neatly
into the atlas of mathematically optimal
forms found in nature. O
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