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oucaorcuce Stephen Hawking's Legacy Will Live On

Activity Guide for Teachers: Escaping from a Black Hole

Purpose: To better understand black holes and Hawking radiation by deriving expressions and
calculating theoretical data that relate to these phenomena.

Procedural overview: Using the basic principles of general relativity and quantum mechanics, derive an
expression, then calculate the Schwarzschild radius of a black hole and the temperature of the black
hole’s Hawking radiation. As an advanced extension, using calculus, derive the expression, then calculate
the approximate amount of time required for a black hole emitting Hawking radiation to evaporate.

Approximate class time: One class period.

Supplies:
* Student handout: Escaping from a Black Hole
* Scientific calculators

Directions for teachers: Students can work through this activity in class, where you can offer help if
they do not understand something. If class time is limited and the students are sufficiently advanced, they
could do this activity as homework instead. Students could work individually, although it may be helpful
for them to work in groups to discuss their reasoning along the way. Suggested student responses for
correctly derived equations and calculated answers are given in italics below.

Directions for students: In Part A, you can derive an expression for the size of a black hole (the
Schwarzschild radius of its event horizon, the classical point of no return for everything including light)
with a given mass. Note that even though you will use a classical physics derivation and not special or
general relativity, your answer is still an excellent approximation.

In Part B, you can derive an expression, then calculate the temperature of Hawking radiation emitted by a
black hole. Matter or energy may escape from black holes in the form of Hawking radiation. According to
quantum mechanics, pairs of virtual particles and antiparticles continually appear throughout space and
then promptly annihilate each other and disappear. Hawking radiation occurs when such a particle-
antiparticle pair appear just outside of a black hole’s event horizon. Stephen Hawking theorized that
when one member of the pair crosses the event horizon, becoming trapped in the black hole, the
remaining particle (or antiparticle) is emitted by the black hole.

A hot object emits photons with a spectrum of frequencies governed by how hot the object is. As an object
heats up, it emits infrared photons, followed by red light, yellow light, blue light, ultraviolet light and so
forth. This is called black body radiation because the color of the radiation is due to the temperature of
the object, not the object’s inherent color. The emission of Hawking radiation makes a black hole appear
to be radiating like a black body at a certain temperature.

In Part C, you can calculate the time it would take for a black hole to evaporate. Theoretically, black holes
that emit Hawking radiation also lose mass and can eventually disappear.



Part A. Calculating the Schwarzschild radius of a black hole

1. Newton'’s gravitational constant is G = 6.67x10-1! meters3kilograms-1second-2. If a small object of mass
m (in kg) is separated from a large object of mass M (in kg) by a distance of r (in m), what is the
gravitational potential energy (in Joules) of the small object? This potential energy is relative to being
infinitely far away from the large object, r=, with zero gravitational potential energy.

PE =-GMm/r

2. If the small object is moving away from the large object with a velocity v (in m/sec), what is the kinetic
energy of the small object (in J)?

KE =mv?/2

3. What is the total energy of the small object when it is a distance r from the large object and has a
velocity v?

E=KE. +PE. =(mv/2)-(GMm/r)

4. If the small object coasts away from the large object until it slows to a stop, and it just barely escapes
from the large object's gravity (r=o) without falling back, what is the total energy of the small object?

E=KE. +PE. =0

5. By equating the small object’s total energy before and after escaping from the large object, what escape
velocity Vescape must the small object have when it is a distance r from the large object in order to
eventually just barely escape?

Vescape = [2 G M/r]1/2

6. A black hole has such strong gravity that even light (traveling at velocity c = 3.00x108 m/sec) cannot
escape if it gets too close. The radius of a black hole’s event horizon, the point at which light can no longer
escape, is called the Schwarzschild radius Rs. Everything within that radius appears black to an outside
observer. If the escape velocity becomes the speed of light, Vescape = ¢, at the event horizon, r=Rs, what is
the Schwarzschild radius?

RS:Z GM/CZ

Our sun’s mass is Ms = 1.99x103° kg, so the black hole’s mass M can be expressed in multiples of solar
masses:

M = (M/Ms) 1.99x1030 kg

7. Plugging in that expression for mass as well as the numbers for G and c, how would you express the
Schwarzschild radius in multiples of solar masses?

R, =~ (2)(6.67x10-11)( 1.99x1039)/( 9.00x10%6) (M/Ms) m

x 2950 (M/Ms) m = 2950 (M/Ms) m



Part B. Calculating the temperature of Hawking radiation from a black hole

Planck’s constant, h # 6.626x10-34 | sec, governs the size of quantum effects. The Heisenberg uncertainty
relation between measurements of momentum (Ap) and position (Ax) is:

(4p) (&%) = (h/4m)

8. Because photons may be emitted from any part of the event horizon, whose dimensions are described
by the Schwarzschild radius Rs or diameter 2 Rs, there is an uncertainty (Ax) ~ 2R; for the initial position
of the photons. What is the corresponding uncertainty in the momentum of emitted photons, Ap?

Ap=h/(8mRs) = (hc?)/(16 TG M)
This uncertainty in momentum corresponds to uncertainty in the photon energy Ap c. That energy can be
characterized in terms of thermal energy fluctuations kgT at a temperature T (with kg # 1.38x10-23
Joules/Kelvin defined as Boltzmann'’s constant):

ApcxkgT

9. Equating these two expressions for Ap and solving for T, what is the temperature corresponding to
Hawking radiation?

Tx (hc3)/(16 7 ks G M)

10. Look up Stephen Hawking’s derivation of the temperature of a black hole’s event horizon. How close
did your answer come to Hawking’s?

Stephen Hawking’s much more rigorous derivation of the temperature of a black hole’s event horizon
gave the answer:

T=(hc?)/(16 n? kg G M)
Our estimate was only off by a factor of m, which is not too shabby.

11. Plugging in the numbers for the constants, how would you express Hawking’s value for the
temperature of a black hole (in Kelvin) in terms of solar masses (relative to our sun)?

T

2

[(6.626x10-34)(3.00x108)3] /[(16 72)(1.38x10-23)(6.67x10-11)( 1.99x100)] (Ms/M) K

2

(Ms/M) 6.18x105 K

Note how cold this is! The surface of a black hole the mass of our sun is barely warm. Such a black hole
barely emits particles. Much less massive black holes are hotter and emit more particles.



Part C. Advanced extension (using calculus): Calculating the time for a black hole to evaporate by
emitting Hawking radiation

The Stefan-Boltzmann constant is:

_ (@m xkg) 5 67%10-" watt
GSB_(15*h3*c2)~ 07X m? * K4

A stationary black hole has an energy E = Mxc2. Due to Hawking radiation, a black hole loses energy at a
rate (d/dt is the derivative with respect to time, or the change per time):

(%) « (Mxc?) = —(4xm * R?)(0g5 * T*)

12. What is the equation if you plug in the expressions for the Schwarzschild radius, Hawking’s
temperature for the black hole and the equation (not the number) for the Stefan-Boltzmann constant?

(d/dt) (M c2) = - (h c)/ (30720 w2 G2 M2)

13. If you plug in numbers and express the black hole’s mass in terms of solar masses, what is the power
of Hawking radiation from a black hole?

(d/dt) (M c2) = - (Ms/M)? 9.04x102° W

That is a tiny amount of radiation from a stellar-mass black hole and therefore a tiny energy loss from the
total energy of the black hole. But black holes with smaller masses have higher temperatures and lose

energy more rapidly than more massive black holes. Mini black holes should completely evaporate in one
final explosion of Hawking radiation, unless other presently unknown quantum gravity effects intervene.

You can integrate your equation from question 12 above to find the time tevaporation (tevap) for a black hole
of initial mass My to evaporate via Hawking radiation.

Below is all the calculus you need to know. Ignoring various multiplicative factors, your equation has the
following starting point, which you can then separate out variables and integrate to solve:

M 1
dt M2
dt = —M? xdM

tevap 0
f dt = —f M? * dM
0 M

0

tevap Mo
f dt = f M? * dM
0 0

M3
tevap = ?



14. Use your equation from question 12 and the above calculus trick (but with all the relevant constants
included this time) to find the time it takes for a black hole of initial mass My to evaporate via Hawking
radiation:

tevap = [10240 T[Z GZJ(h C4) M03

15. Use your answer to question 14 and plug in the constants to find the evaporation time (in seconds or
years) for a black hole with an initial mass expressed in multiples of solar masses or in kg:

(Mo/Ms)3 6.60x107% sec

12

Levap

124

(Mo/Ms)3 2.09x10°7 years

124

(Mo/10'1 kg)? 10 billion years

16. Have black holes evaporated since the Big Bang, which occurred 13.8 billion years ago? Do a sample
calculation and explain your thought process.

Hawking theorized that mini black holes could have been formed soon after the Big Bang, when the universe
was denser. Most stellar-mass black holes may have formed later, as large stars ultimately burned out one
by one. Thus a small black hole of ~ 101 kg or less created early in the 13.8-billion-year history of the
universe would have evaporated by now. But more typical stellar-mass black holes would require far longer
to evaporate than the universe’s predicted remaining lifetime of about 5 billion years.



