Brazil Expedition Uncovers Thousands of Carats of Exquisite Natural Emeralds

Brandish a whopping 50 carats of genuine South American emeralds in a handcrafted new necklace design for less than $200... and get a $100 Stauer Gift Coupon!

Halfway into our ambitious trek through the rain forest I had to remind myself that “Nothing good comes easy.” These days it seems that every business trip to Brazil includes a sweltering hike through overgrown jungles, around cascading waterfalls and down steep rock cliffs. But our gem broker insisted it was worth the trouble. To tell you the truth, for the dazzling emeralds he delivered, I’d gladly go back to stomping through jaguar country.

Now our good fortune is your great reward. Don’t miss this rare opportunity to own an impressive 50 carat strand of genuine South American emeralds for under $200. And for a limited time, we’ll sweeten every necklace order with a $100 Stauer Gift Coupon!

Faced with this embarrassment of riches, our designer transformed this spectacular cache of large stones (each is over 8 carats average weight) into a stunning 50 ctw necklace of faceted emeralds set into .925 sterling silver. Each emerald is surrounded by delicate sterling silver rope work and filigree in the Bali-style. The 18” necklace dangles from a sterling silver chain that fastens with a secure double-sided shepherd’s hook clasp.

What is the source of our emerald’s timeless appeal?

The enchanting color of the Stauer Carnaval Faceted Emerald Necklace comes from nature’s chemistry. Our polished and faceted, well-formed natural emeralds are immediately recognized as something special. Indeed, when we evaluated these emeralds, color was the most important quality factor. Today, scientists tell us that the human eye is more sensitive to the color green than to any other. Perhaps that is why green is so soothing to the eye, and why the color green complements every other color in your wardrobe.

Emeralds are, by weight, the most valuable gemstone in the world.

Now you can wear genuine emeralds and feel great about knowing that you were able to treat yourself to precious gems without paying a precious price. A 100+ carat emerald necklace found on Rodeo Drive or 5th Avenue could cost well over $250,000...but not from Stauer. Wear and admire the exquisite Stauer Carnaval Faceted Emerald Necklace for 30 days.

If for any reason you are not dancing the Samba with pure satisfaction after receiving your faceted emerald necklace, simply return it to us for a full refund of the purchase price. But we’re confident that when you examine this stunning jewelry, you’ll be reminded of the raw beauty of the Amazon rain forests mixed with the flash and dazzle of the exotic Carnaval in Rio de Janeiro. Call Today. This cache of genuine emeralds is extremely limited.

A. Carnaval Necklace (50 ctw) $195
B. Carnaval Ring (13 ctw) $125
C. Carnaval Earrings (20 ctw) $125
D. Carnaval Bracelet (50 ctw) $175
Carnaval Collection (83 ctw) $445
includes necklace, ring and earrings.
Now only $295 Save $150!

Special Offer—Receive a $100 Stauer Gift Coupon with the purchase of each individual Carnaval.

Promotional Code FEN164-02
Please mention this code when you call.

1-888-306-7179

14101 Southcross Drive W., Dept. FEN164-02
Burnsville, Minnesota 55337

Stauer

Smart Luxuries—Surprising Prices
In The News

5 STORY ONE
• Ancient amber has sticky implications for plant resins

8 PALEONTOLOGY
• Oldest known feathered dino had four “wings”
• A giant, flesh-shearing reptile once ruled the seas
• Spotting wee dinosaur tracks

9 HUMANS
• Ancient hominid “Ardi” walked upright but still climbed trees

10 ATOM & COSMOS
• New views of moon prove a bit soggy
• Mercury’s latest photo op

11 BODY & BRAIN
• Sleep deprivation linked to Alzheimer’s
• Fat helps leukemia cells resist chemotherapy
• Keeping the hepatitis C virus out of transplanted livers

12 MATTER & ENERGY
• Quantum spookiness gets scaled up in superconductors

13 MOLECULES
• Tin acts the heavy, ignores carbon’s constraints
• How squid get a rainbow shine

14 SCIENCE & SOCIETY
• 2009 Nobel Prizes cite telomeres, fiber optics, digital sensors and ribosomes

Special Issue
The Science of Slumber

16 THE WHY OF SLEEP
Researchers set their sights on unraveling one of biology’s most enduring mysteries.
By Tina Hesman Saey
PLUS: The lowdown on animal sleep, from armadillos to giraffes.

24 SLEEP GONE AWRY
Studying what goes wrong in insomnia and narcolepsy may offer clues to how normal sleep works as well.
By Laura Sanders

28 DYING TO SLEEP
Scientists catalog the many perils — some dire — of skimping on shut-eye.
By Tina Hesman Saey

Departments

2 FROM THE EDITOR

4 NOTEBOOK

34 FEEDBACK

35 BOOKSHELF

36 COMMENT
Charles A. Czeisler says rules should be changed to make sure physicians-in-training get enough sleep.

COVER A lab tech is wired up to record brain waves in David Dinges’ sleep deprivation lab at the University of Pennsylvania School of Medicine in Philadelphia.
Photo by Tommy Leonardi
FROM THE EDITOR

Solving sleep’s mysteries seems a Herculean task

In the centuries since the early days of Greek civilization, mythological explanations for natural phenomena have steadily succumbed to the insights of science.

Lightning bolts flash in the sky not from the wrath of Zeus, but because of electrical charges in clouds. The sun is a thermonuclear reactor, not a chariot driven by Helios. Earthquakes are explained by plate tectonics, not Poseidon thumping the seafloor with his trident.

But to explain sleep, you might as well still rely on Hypnos, son of Nyx, goddess of night. With powder or potion or the calming breeze of his hawklike wings, Hypnos, god of sleep, cast the spell of slumber.

Sleep is a neurobiological necessity, demanding roughly a third of most people’s lives. Yet it refuses to reveal why. Despite decades of serious study, agreement among researchers about sleep’s purpose remains elusive.

In a special report in this issue (Page 16), Tina Hesman Saey and Laura Sanders assess the state of sleep science, describing the latest research efforts to solve its mysteries and alleviate its malfunctions. Current understanding suggests that sleep has something to do with refreshing the tired body and brain, perhaps plays a role in health and emotion, and seems essential for some forms of learning and memory (appropriate, as Hypnos inhabited the underworld near Lethe, the river of forgetfulness). But listing sleep’s effects doesn’t conclusively answer the question of its causes or evolutionary purpose—or whether it even has one. Perhaps, some investigators speculate, sleep is just a natural by-product of a complex network of communicating nerve cells.

In any case, sleep’s cycles and stages certainly reflect a complex interplay of genes and chemicals that induce sleepiness, restore wakefulness and wreak havoc when disrupted. Sleep disorders, such as insomnia and narcolepsy, afflict millions. Countless other health problems, from depression to heart disease and even Alzheimer’s (Page 11), have been linked to lack of sleep. Premature death can be the price of sleep deprivation (fitting perhaps, since the god of death, Thanatos, was twin brother to Hypnos).

For all these reasons, sleep researchers will continue their odyssey to rescue sleep from the haze of mythologies and replace Hypnos with Hermes, the god of knowledge.

—Tom Siegfried, Editor in Chief
Our numbers add up to better sleep.*

4 OUT OF 5
Zeo users reported improved sleep quality

3 OUT OF 4
Zeo users got more Deep or REM sleep

4 OUT OF 5
Zeo users reported feeling better in the morning

70%
of Zeo users reported getting an average of an hour more sleep

2x
Zeo users reported falling asleep almost twice as fast

"Zeo is truly an innovative and totally science-based program that empowers the individual to improve their health."
Phyllis Zee, MD, PhD

*Reported in a Zeo consumer study; results available at www.myzeo.com.

Introducing the revolutionary
Zeo Personal Sleep Coach

Just like proper diet, good sleep is vital to a healthy life. But poor sleep can be a mystery, and many people feel powerless to improve it. Developed with leading scientists, only Zeo helps you monitor your sleep at home and then provides personalized, expert advice to help you sleep better and feel your best. Here’s how it works:

Zeo identifies hidden “sleep stealers”: how lifestyle choices and environmental factors significantly affect your sleep.

Zeo teaches, guides and motivates with our personalized 7 Step Sleep Fitness™ program.

Order now to get the headband, bedside display, full access to our user site and your personalized sleep training program.

TRY ZEO RISK-FREE FOR 30 DAYS PLUS get FREE SHIPPING by contacting us using the information below

1-866-252-6322
www.ZeoSNW.com

Zeo Personal Sleep Coach is neither a medical device nor a medical program and is not intended for the diagnosis or treatment of sleep disorders. If you suspect that you may have a sleep disorder, consult your physician.

© 2009 Zeo Inc., All Rights Reserved.
Scientific Observations
“Surveys show that only about a third of U.S. respondents have a problem with evolution and religion. These are fundamentalists, and there is no need to convert or argue with them. But another 40–50 percent of mainstream Americans would be open to evolution, except that they get all this creationist misinformation. It seems obvious that if we spent more time in our textbooks talking about how tetrapods came up on land, how birds evolved from dinosaurs, how whales went back into the oceans, the average American would not be so vulnerable to the claims of creationists.”

—Paleontologist Kevin Padian of the University of California, Berkeley in the Sept. 15 Current Biology

Science Past | FROM THE ISSUE OF OCTOBER 24, 1959
SONS WITH ULCERS HAVE DOMINANT MOTHERS — Men who get duodenal ulcers early in life tend to have dominant mothers and submissive fathers. In a Medical Research Council report, a research team recorded that two-thirds of a group of men who got ulcers before they were 25 had mothers who were "dominant and controlling personalities and made the major decisions in their families." These mothers were often "very conscientious women with a high sense of duty who were exceedingly houseproud and devoted to efficient routine." … Among the various factors considered were the fathers of the ulcer sufferers. Many of them, said the scientists, "showed a characteristic steadiness and unassertiveness both at work and at home."

Science Future
November 4–8
Clinicians and researchers meet in San Diego to discuss advances in psychiatric genetics. Visit www.ispg2009.org

Through November 21
Watch Gearing Up, a documentary about the FIRST robotics competition. For local listings, see www.gearingupproject.org

December 15
Nominations deadline for the Kavli Prizes in nanoscience, neuroscience and astrophysics. Get form at www.kavliprize.no

Science Stats | SLEEPLESS IN THE UNITED STATES
Financial worries topped the list of what kept Americans up at night in 2008

| Concerns that robbed people of sleep in the past month, by respondent percentage |
|---|---|---|
| Personal finances | 7% | 9% | 16% |
| The U.S. economy | 5% | 10% | 15% |
| Health concerns | 6% | 7% | 14% |
| Employment concerns | 4% | 6% | 10% |
| Relationship concerns | 2% | 6% | 9% |
| Health care costs | 3% | 5% | 8% |
| Global warming | 2% | 2% | 3% |
| Threat of terrorism | 1% | 2% | 3% |
| Total sample size: 1,000 |

In all, a third of those surveyed reported disturbed sleep in past month.

For Daily Use
The amount of sleep older men get may be in their dreams. In a study of almost 1,000 people, average age 68, researchers from the Netherlands found that men reported getting about seven hours of sleep a night, while women reported about 6.8 hours of sleep. But when the scientists measured sleep time using actigraphs, a wristwatch-like device that records movement and aids in calculating total sleep time, they found the men slept only 6.4 hours a night, compared with 6.6 hours for women. It’s not clear why elderly men tend to overestimate their sleep time so much more than do women, the researchers report in the Oct. 1 Sleep.
Our picture of a bone-dry moon is clearly in need of updating. — ROBIN CANUP, PAGE 10

In the News

STORY ONE

Flowerless plants also made form of fancy amber

Fossilized resin may hail from a preconifer or an extinct fern

By Rachel Ehrenberg

Everything eventually comes back in style. A type of amber thought to have been invented by flowering plants may have been en vogue millions of years before those plants evolved, suggests an analysis of newly discovered amber droplets. What kind of plant produced the droplets remains a mystery, but researchers say in the Oct. 2 Science that it could have been a predecessor of ancient conifers or some strange extinct fern.

Ambers are fossilized plant resins known for their golden luster and almost mineral-like qualities. Scientists found the new droplets in a 320-million-year-old coal deposit in Illinois. Their age was a surprise, says Ken Anderson of Southern Illinois University in Carbondale.

The droplets, or blebs, date to the Carboniferous period, when swampy forests of ferns and giant lycopod trees dominated the Earth. Toward the end of the period, early conifers — the relatives of today’s pines, spruces and firs — developed. Though fossilized resins from this era exist, they are typically waxy and unlike those from flowering plants, which evolved nearly 200 million years later.

“We thought, ‘It’s got to be from an early conifer,’” says Anderson, who coauthored the new study along with P. Sargent Bray of Macquarie University in Sydney.

Some early conifers produced the type of amber familiar to gem collectors today. But such a find in a coal bed would have been surprising since conifers were barely on the scene when such beds formed.

When the researchers analyzed the amber, though, they discovered a chemical signature known only from the amber of flowering plants. That find suggests that a very old plant figured out how to make a particular type of resin that modern relatives get credit for.

“It’s a sobering story for people who study amber,” says David Grimaldi of the American Museum of Natural History in New York City, who wrote a commentary on the work in the same issue of Science.

Many plant resins have a solid fraction that hardens upon exposure to air, and another fraction that evaporates (giving off scents such as pine, frankincense and myrrh). In life, the solid stuff acts as a Band-Aid, sealing off plant wounds to prevent infection by fungi or other microbes. It also notoriously traps wayward insects and other creatures that stumble in.

In death, many of these resins fossilize into ambers, which are typically categorized into classes according to the chemistry of their compounds. Compounds in amber known as terpenoids differ, depending on whether the amber comes from flowering plants or conifers.

Researchers expected the symmetry and shape of the terpenoids in the newly found Carboniferous amber to resemble those found in conifers. But instead the molecules looked like those from flowering plants.

The find suggests that chemical composition alone isn’t enough to definitively pinpoint an amber’s origins, Grimaldi says. If multiple plant groups
evolved similar strategies for making resin, then chemistry could be deceptive.

Fossilized plant parts that accompany the amber are the key to clinching its pedigree, he says. Unfortunately, there was no plant matter near the Carboniferous droplets. So even though the amber droplets are definitely not from a flowering plant, their origin remains unknown.

The findings, though, may not surprise chemists, says David Gang of the Institute of Biological Chemistry at Washington State University in Pullman.

Plants have a huge diversity of terpenoids, which are crucial for making important hormones. Since Carboniferous plants already made terpenoids, they wouldn’t have had to do much to make the compounds found in the Illinois amber, Gang says. A new version of one enzyme could do the trick.

“This is interesting and neat, but not startling,” Gang says. If anything, it highlights the dearth of plant chemistry information that scientists have. Researchers tend to focus on compounds in plants that are interesting to humans, he says. Citrus or pine smell nice, but there are 400,000-odd other plant species.

Nonetheless, the discovery probably has entomologists drooling. Amber has entombed spectacular specimens from days long ago, including termites, bees, algae, gnats and even a small frog and lizard. The Carboniferous boasted plenty of winged insects — including dragonflies as big as hawks, Anderson notes — so this find opens the possibility of discovering really old life trapped in amber.

And the find will probably be exciting for those who value amber for its beauty alone. There’s evidence that Neolithic people gathered amber on the shores of the Baltic Sea about 13,000 years ago, and it may have been used in jewelry some 30,000 years ago, notes Jean Langenheim of the University of California, Santa Cruz. The discovery, she says, promises to stimulate discussion in the plant resin community. “As we say, once you get interested in resins, you get stuck.”

Most amber coveted for its jewel-like qualities is from flowering plants, which arose around 140 million years ago, and conifers, which arose around 280 million years ago.

Back Story | RESIN ARISING

Most amber coveted for its jewel-like qualities is from flowering plants, which arose around 140 million years ago, and conifers, which arose around 280 million years ago.

Plant Evolution

Present

50 mya

Flowing plants, many of which can be assigned to modern families, become widespread

100 mya

Early flowering plants rise

150 mya

Cycads dominate, and conifers spread worldwide

200 mya

Cycads and ginkgos arise, and early conifers diversify

250 mya

Early conifers rise

300 mya

Horsetails, lycopods and mosses diversify, and early ferns rise

320 mya

Newly found amber blebs are surprisingly old

350 mya

42 million years ago: This sample is from the largest known amber deposit worldwide, called Baltic amber. Though its origins have been disputed, Baltic amber may derive from Sciadopityaceae, a conifer family represented today by a single tree species in Japan.

130 million years ago: During the early Cretaceous, trees began oozing large quantities of amber. This sample from Lebanon was probably produced by a conifer from the now extinct family Cheirolepidaeae. Lebanese ambers are among the oldest ambers that contain inclusions of large organisms, such as insects.

20 million years ago: This amber was produced by an extinct species of *Hymenaea*, a flowering plant in the pea family. A *Hymenaea* leaf is visible in the specimen above, recovered from the Dominican Republic. Ambers from this region are prized for their clarity and size.

230 million years ago: This small bleb of amber from New Mexico was probably formed by the extinct primitive conifer *Araucarioxylon*. Despite the name, this genus is not closely related to the living araucarians, which produce copious amounts of resin.
Rosetta Stone. The fastest and easiest way to learn Chinese.

One day, his son would speak to the world.

He wanted them to understand.

Arabic • Chinese (Mandarin) • Danish • Dutch • English (American) • English (British) • Filipino (Tagalog) • French • German • Greek • Hebrew • Hindi • Indonesian • Irish • Italian • Japanese • Korean • Latin • Pashto • Persian (Farsi) • Polish • Portuguese (Brazil) • Russian • Spanish (Latin America) • Spanish (Spain) • Swahili • Swedish • Thai • Turkish • Vietnamese • Welsh

Rosetta Stone brings you a complete language-learning solution, wherever you are: at home, in-the-car or on-the-go. You’ll learn quickly and effectively, without translation or memorization. You’ll discover our method, which keeps you excited to learn more and more.

• You’ll experience Dynamic Immersion as you match real-world images to words spoken by native speakers so you’ll find yourself engaged and learn your second language like you learned your first.

• Our proprietary Speech Recognition Technology evaluates your speech and coaches you on more accurate pronunciation. You’ll speak naturally.

• Only Rosetta Stone has Adaptive Recall, that brings back material to help you where you need it most, for more effective progress.

• And Rosetta Stone includes Audio Companion so that you can take the Rosetta Stone experience anywhere you use a CD or MP3 player.

SAVE 10%!
Level 1 Reg. $229 NOW $206
Level 1, 2 & 3 Reg. $499 NOW $449

100% GUARANTEED SIX-MONTH MONEY-BACK

Call (866) 290-3757 Online RosettaStone.com/qvs109
Use promotional code qvs109 when ordering.

Paleontologists have unearthed the nearly complete remains of an immense ichthyosaur with serrated teeth, an evolutionary innovation that would have rendered the behemoth the top predator in its ecosystem.

The marine creature, whose remains were discovered in central Nevada, lived about 240 million years ago, at a time early in ichthyosaur evolution, Nadia Fröbisch of the University of Chicago reported September 23. Most of the ichthyosaurs known from this era have one of two tooth types: sharp, conical teeth that grabbed slippery fish or broad blunt teeth that crushed shell-bearing creatures. A few ichthyosaurs, presumably those with a more varied diet, had both tooth types. But the new creature’s teeth are unlike any seen in an ichthyosaur of that era, Fröbisch said.

Rather than having a round cross-section, the teeth were roughly diamond-shaped with serrations along the front and rear edges—a dentition particularly well-suited to shearing flesh.

And the ancient creature was huge: Even though erosion had removed much of the snout, the fossil was more than 10 meters long. An adult of the species probably measured between 11 and 15 meters long, she noted.

“This ichthyosaur could have been the T. rex of the seas,” Fröbisch said. Although some ichthyosaurs that evolved millions of years later also had serrated teeth, those predators weren’t nearly as large. — Sid Perkins

King of the ancient seas

Pitter-patter of tiny theropod feet

Paleontologists have discovered the world’s tiniest dinosaur tracks—impressions so small that each would fit on a penny.

The wee, three-toed footprints appear in rocks between 100 million and 120 million years old along what is now the southern coast of South Korea, Jong-Deock Lim of the National Research Institute of Cultural Heritage in Daejeon, South Korea, reported September 25. Made in material laid down as fine-grained sediments along an ancient riverbank, the tracks include claw marks and impressions of the pads of a creature’s feet. Scientists haven’t yet found the remains of a dinosaur small enough to make the tracks, but track characteristics indicate that the creature was a theropod—a bipedal, typically meat-eating dinosaur.

Lim and his colleagues found about a dozen of the footprints, which range between 1.27 and 1.51 centimeters in length. Because paleontologists have previously found similar prints in this region measuring more than 6 centimeters long, the team suggests that the newly described tracks were made by a hatching. Estimates suggest that the baby dinosaur stood about 4 centimeters tall at the hip. — Sid Perkins

Feathered dino predates birds

Peacock-sized creature had aerodynamic appendages

By Sid Perkins

A newly described, profusely feathered dinosaur may give lift to scientists’ understanding of bird and flight evolution, researchers report. The creature, which stood about 28 centimeters tall at the hip, is the oldest known to have sported feathers and is estimated to be between 1 million and 11 million years older than Archaeopteryx, the first known bird.

Several fossils of the creature, which has been dubbed *Anchiornis huxleyi*, have been unearthed in northeastern China, Xing Xu reported September 25. The strata that contained those feathered fossils were laid down as sediments between 151 million and 161 million years ago, he and his colleagues note in a paper published online September 24 in *Nature*.

Two types of feather adorn the dinosaur, said Xu, of the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing. One kind, commonly referred to as “dino-fuzz,” resembles the frayed end of a piece of yarn. The other type, similar in overall structure to the feathers of modern-day birds, consists of small filaments that branch from a larger shaft-like filament.

The dino-fuzz decorates the creature’s head and neck. About two dozen of the shafted feathers adorn each forelimb and lower leg, the researchers report. Feathers on the legs and feet appear to have overlapped each other, creating aerodynamic surfaces that would have, in essence, given *Anchiornis* a wing on each of its four limbs. A similar configuration has been seen in other feathered dinosaurs (SN: 1/27/07, p. 53).

With so many species having this arrangement, the four-winged configuration must have been an important phase in the evolutionary transition from dinosaurs to birds, says James M. Clark, a vertebrate paleontologist at George Washington University in Washington, D.C.
Ancient hominids get a new look with analysis of *Ardipithecus* fossil

Fossils suggest creature didn’t resemble any living primate

By Bruce Bower

It’s been 4.4 million years since a female now nicknamed Ardi lived in eastern Africa, but she still knows how to make an entrance.

Analyses of her partial skeleton and the remains of at least 36 of her comrades, described in the Oct. 2 *Science*, provide the first comprehensive look at an ancient hominid species. *Ardipithecus ramidus* evolved a few million years after humanity’s evolutionary family diverged from a lineage that led to chimpanzees, but it is not clear exactly how this species is related to other early hominids.

Ardi’s skeleton indicates that the common ancestors of people and chimpanzees did not resemble chimps, as many scientists have assumed, says project director Tim White of the University of California, Berkeley. Ardi displays an unexpected mix of apelike and monkey-like traits suitable for both tree climbing and upright walking. Overall, *Ardipithecus* looks unlike any living primate, White adds. Early hominids evolved in distinctive ways, so modern apes and monkeys provide poor models of a creature such as Ardi, in his view.

“Ardipithecus is so rife with anatomical surprises that no one could have imagined it without direct fossil evidence,” White says.

In 1992, teeth thought to belong to *Ardipithecus* were found in Ethiopia’s Afar Rift. A hand bone from Ardi turned up in 1994. Excavations over three years unearthed the rest of Ardi’s bones, and fieldwork from 1981 to 2004 yielded fossils of other individuals.

It took years to remove Ardi’s fossils from hardened sediment and to conduct comparisons with other fossil apes and modern apes. Analyses of argon isotopes in volcanic ash layers sandwiching the new finds provided an estimate that Ardi lived 4.4 million years ago.

White’s team calculates that Ardi weighed about 50 kilograms, or 110 pounds, and stood 120 centimeters tall, or nearly four feet. Lucy, a 3.2-million-year-old partial skeleton of the hominid species *Australopithecus afarensis*, weighed about half as much as Ardi and was about 15 centimeters shorter. Lucy was found in 1974, and the new *Ardipithecus* finds offer unprecedented new avenues for testing hypotheses about the evolution of Lucy’s kind.

A relatively small skull and reduced canine teeth suggest that Ardi was female. Her brain case and face share many features with skull pieces from *Sahelanthropus*, a 6- to 7-million-year-old hominid in Chad (*SN*: 7/13/02, p. 19). Ardi’s brain size was close to that of both *Sahelanthropus* and modern chimps.

Ardi’s hands, arms, feet, pelvis and legs collectively indicate that her species moved capably in the trees, on hands and feet. Ardi’s kind lacked skeletal traits for hanging from branches, adeptly climbing tree trunks or knuckle-walking, thus distinguishing *Ardipithecus* from modern African apes.

Small faces and canine teeth indicate that *Ardipithecus* males rarely fought, proposes team member Owen Lovejoy of Kent State University in Ohio. In apes and monkeys with large canines, males frequently wield their sharp teeth in battles over status and access to females.

Lovejoy hypothesizes that *Ardipithecus* males, like their counterparts in Lucy’s species (*SN*: 6/11/05, p. 379), formed families with specific females. Males cemented relationships with mates by sharing food, he suggests.

The features seen in *Ardipithecus* teeth “tell us that humans have been evolving toward what we are today for at least 6 million years,” Lovejoy said at a news conference on October 1. “This is one of the most revealing hominid fossils that I could have imagined.”
The damp moon: Team finds water on lunar surface
Interior volcanic rocks also hold more H₂O than thought

By Ron Cowen

Scientists’ understanding of the moon could be all wet. Its surface is surprisingly dewy and its interior contains more water than previous analyses have indicated, according to new studies.

Observations from three spacecraft suggest that water molecules are widely distributed over a thin layer of the lunar surface rather than locked up in icy enclaves predicted to lie at the moon’s poles. The results, detailed in a trio of papers posted online September 24 in Science, suggest that liquid water may be more available to future moon explorers than had been thought. Concentrations in sunlit soil might reach about 1,000 parts per million, the equivalent of roughly a quart of water per ton of material. That water doesn’t remain on the moon, but comes and goes each lunar day.

In contrast, water molecules bound to phosphate minerals within volcanic rocks — material that formed well beneath the lunar surface — date back several billion years, says Francis McCubbin of the Carnegie Institution for Science in Washington, D.C. A fourth, unpublished study led by McCubbin finds a surprisingly high abundance of this interior water, which may shed new light on how the moon formed.

The researchers who made the surface observations caution that their observations cannot clearly distinguish between water and the hydroxyl ion, which can serve as a marker for water.

Nonetheless, Roger N. Clark of the U.S. Geological Survey in Denver asserts that “this is the first detection of water on the moon and we see it all over, not just in the polar regions.” Clark, a coauthor of two of the papers in Science, led a team that found evidence of water in spectra taken by the Cassini spacecraft in 1999. Clark says he waited years to publish because “the detection was so fantastic, I felt we needed confirmation.”

Confirmation has now come in the form of spectra taken by instruments aboard NASA’s Deep Impact spacecraft and Chandrayaan-1, India’s first lunar mission. On September 17, other researchers reported that the Lunar Reconnaissance Orbiter spacecraft had found hydrogen on the moon’s surface, another possible marker of water (SN Online: 9/18/09).

The three papers “present a strong case for surficial water on the moon, and this could certainly be the result of delivery by icy impactors or solar wind interactions long after the moon formed,” comments Robin Canup of the Southwest Research Institute in Boulder, Colo.

In McCubbin’s study of the lunar interior, he and his colleagues calculate that phosphate minerals recovered from the moon contain a concentration of water as high as several thousand parts per million. This result, combined with lower abundances reported for other volcanic material, points to an average overall abundance of water in the lunar mantle significantly higher than the previous estimate of 1 part per billion.

It has been a long-standing assumption, notes Canup, that if the moon formed when a giant impactor smashed into the young Earth, any water would have been vaporized by the high temperatures generated and that vapor would have escaped into space. However, that assumption “has yet to be evaluated with direct models,” she adds.

McCubbin agrees that there may have been some way for water to be retained in this impact model. Alternative explanations would have to account for the water now known to reside inside the moon.

Says Canup: “Our picture of a bone-dry moon is clearly in need of updating.”

Flyby details Mercury’s unobserved terrain

Flying within 228 kilometers of Mercury’s surface on September 29, the MESSENGER spacecraft snapped portraits of a portion of the planet that had never before been imaged close up. The encounter was the mission’s third and last flyby and gave the craft the gravitational assistance it needs to settle in March 2011 into a year-long orbit around Mercury, the solar system’s innermost and least explored planet. Images from the latest encounter (one shown here) detailed 5 percent of the planet that had never been examined by spacecraft before.

— Ron Cowen
Researchers link Alzheimer’s to a lack of ZZZZZs

Sleep-deprived mice develop more plaques in their brains

By Tina Hesman Saey

Losing sleep could lead to losing brain cells, a new study suggests.

Levels of a protein that forms the hallmark plaques of Alzheimer’s disease rise in the brains of mice and in the spinal fluid of people during wakefulness and fall during sleep, researchers report online September 24 in Science. Mice that didn’t get enough sleep for three weeks also had more plaques in their brains than well-rested mice, the team found.

Scientists knew that having Alzheimer’s disease was associated with poor sleep, but they had thought that Alzheimer’s disease caused the sleep disruption. “This is the first experimental study that clearly shows that disrupted sleep may contribute to the disease process,” says Peter Meerlo, a neuroscientist at the University of Groningen in the Netherlands. “It shows that chronic sleep loss, in the long run, changes the brain in ways that may contribute to disease.” A vicious cycle could result if sleep loss leads to Alzheimer’s disease and the disease leads to more sleep loss, he says.

Researchers led by David Holtzman of Washington University in St. Louis used a method called microdialysis to measure the levels of amyloid-beta protein in the fluid between brain cells of mice. Amyloid-beta sometimes twists into a sticky form and clumps together, forming plaques. Scientists don’t yet understand how, but they think that amyloid-beta clumping eventually leads to the death of neurons and to Alzheimer’s disease symptoms (SN: 8/16/08, p. 20).

Although levels of amyloid-beta in the brain tissue of the mice didn’t seem to change, Holtzman’s group found that levels of the protein released into brain fluid did rise and fall throughout the day. “We didn’t know it would coordinate with sleep and wakefulness,” Holtzman says.

Levels of the protein in the brain fluid increased in mice during the night — when mice are mostly awake — and fell during the day when mice sleep. The longer the mice stayed awake, the more amyloid-beta levels increased, the team found. The team also measured amyloid-beta levels in the cerebral spinal fluid of some healthy young people and found the same pattern as in the mice. Amyloid-beta levels increase when people are awake and fall during sleep.

Giving mice a shot of a hormone called orexin, which promotes wakefulness, also caused amyloid-beta levels to increase. And blocking orexin’s activity led to a decrease in the amount of protein released into brain fluid. The researchers don’t yet know if orexin is directly responsible for helping release amyloid-beta into brain fluid or if by keeping animals awake, orexin allows more time for levels of the protein to build up.

Holtzman’s team also studied mice genetically predisposed to build Alzheimer’s plaques. For three weeks, the team allowed some of the animals to sleep only four hours a day while others slept normally. Sleep-deprived mice made more plaques than well-rested mice. A drug that blocks orexin’s action stopped plaque buildup in well-rested, mutant mice, the researchers discovered.

Studies in people haven’t shown a link between Alzheimer’s disease and chronic sleep loss, but Holtzman speculates that lack of sleep, particularly in midlife, could hasten onset of the disease in genetically susceptible individuals. “Mechanistically we don’t understand why [sleep] is manipulating amyloid-beta rhythms,” says Sangram Sisodia of the University of Chicago, “but we do know it’s doing something good for the brain.... There’s a clear message here about why it is so important to sleep.”

Obesity and leukemia relapses

In leukemia patients, excess fatty tissue allows cancerous cells to avoid destruction by chemotherapy drugs, a study in mice suggests. Steven Mittelman of the University of Southern California and Childrens Hospital Los Angeles and his colleagues studied obese and normal-weight mice injected with cells similar to the aberrant white blood cells that cause acute lymphoblastic leukemia, or ALL. After chemotherapy treatment, fewer of the normal-weight mice developed full-blown leukemia and more of them survived, Mittelman and his colleagues report in the Oct. 1 Cancer Research. The team also found that human ALL cells in a fatty milieu were more likely to withstand chemotherapy drugs than similar cells in a control mix. — Nathan Seppa

Keeping hepatitis C out

A new treatment might stop hepatitis C virus from infecting newly transplanted livers in some people with the disease, a study in a small group of patients shows. By modifying immune cells taken from healthy donors and injecting the cells directly into transplant recipients, Hideki Ohdan of Hiroshima University in Japan and colleagues lessened the amount of virus circulating in the organ recipients’ blood. One patient shows no detectable virus after treatment, the team reports October 1 in the Journal of Clinical Investigation. Hepatitis C is a disease of the liver and the most common reason for a liver transplant. But because transplant patients take immune-suppressing drugs, the virus can openly attack the new liver. — Nathan Seppa
Entanglement in the macroworld
‘Spooky action at a distance’ observed in superconductors

By Laura Sanders

By linking the electrical currents of two superconductors large enough to be seen with the naked eye, researchers have extended the domain of observable quantum effects. Billions of flowing electrons in the superconductors can collectively exhibit a weird quantum property called entanglement, usually confined to the realm of tiny particles, scientists report in the Sept. 24 Nature.

“It’s an exciting piece of work,” comments physicist Steven Girvin of Yale University. “People are interested in pushing the boundaries of quantum mechanics.”

Entanglement is one of the strangest consequences of quantum mechanics. After interacting in a certain way, objects become mysteriously linked, or entangled, so that what happens to one seems to affect the fate of the other. For the most part, researchers have found signs of entanglement only between tiny particles, such as ions, atoms and photons.

John Martinis and colleagues at the University of California, Santa Barbara looked for entanglement between two superconductors, each less than a millimeter across. These superconducting circuits, made of aluminum, were separated by a few millimeters on an electronic chip. At low temperatures, electrons in the superconductors flow collectively, unfettered by resistance.

Despite each superconductor’s relatively large size, the electrons move together in a coherent way. “There are very few moving parts, so to speak,” Girvin says. “It’s a general fact that the larger an object is, the more classical it is in its behavior, and the more difficult it is to see quantum mechanical effects.”

In the new study, researchers used a microwave pulse to attempt to entangle the electrical currents of the two superconductors. If the currents were quantum-mechanically linked, one current would flow clockwise at the time of measurement (assigned a value of 0), while the other would flow counterclockwise when measured (a value of 1), Martinis says. But the currents’ directions would be completely independent of each other if classical physics were at work.

After attempting to entangle the superconducting circuits, Martinis and his team measured the current directions 34.1 million times. When one current flowed clockwise (0), the other flowed counterclockwise (1) with very high probability. So the two were linked in a way that only quantum mechanics could explain.

“It has to be in this weird quantum state for you to get those particular probabilities that we measure,” Martinis says. “The percentages of those different things are not something that you can classically predict.”

Finding entanglement between superconductors is “a fairly important milestone,” comments Anthony Leggett of the University of Illinois at Urbana-Champaign. The new study “does seem to be rather unambiguous evidence for entanglement.”

Entangled superconductors might be used in a powerful quantum computer. “People are very interested in the possibility of building a quantum computer,” and these kinds of systems may be quite good for that, Leggett says.

Martinis says that the technology for building advanced electrical circuits may be used to build quantum circuits, too. “The hope is that since we know how to put together integrated circuits in complex ways, that maybe we can make very complex quantum circuits in the same way,” he says.

He warns, though, that a good quantum computer is a long way off. Researchers still need to find a way to make entanglement in superconducting circuits last longer. And a good quantum computer would need more than two circuits. Martinis says his group will try to entangle three and four such circuits next.

Besides providing technological advances, the new results add to the debate over where to draw the line between quantum mechanics and the everyday physics that governs large-scale phenomena. Researchers want to know how far quantum weirdness can go.
The element tin flouts carbon’s chemistry rules

Heavy metals don’t always behave like organic neighbor

By Rachel Ehrenberg

Just because carbon jumps off a bridge, doesn’t mean that tin will too. Scientists have conducted an experiment that attaches a simple hydrocarbon to triple-bonded tin atoms, violating a well-established set of organic chemistry rules. The finding suggests that heavier elements don’t behave the same way as carbon, a team reports in the Sept. 25 Science.

In the new work, tin atoms bonded to ethylene, a small molecule consisting of two carbon and four hydrogen atoms. Tin should, in principle, be chemically similar to carbon. But carbon does not undergo this same reaction.

“I believe this is a reaction that could lead to further breakthroughs in fundamental science,” says Lawrence Sita of the University of Maryland College Park, who wrote a commentary on the research in the same issue of Science. “This could be a launching point for a number of experiments.”

In the mid-1960s, chemists Robert Woodward and Roald Hoffmann showed that certain reactions involving carbon-containing molecules are more likely than others. These reactions proceed in a predictable manner based on the symmetry of orbitals, regions of space occupied by electrons as they whiz around in the atoms involved.

Woodward and Hoffmann’s rules revealed order in a bunch of seemingly unrelated reactions. But the rules were based on carbon, and few considered how they applied to other elements. Because tin resides in the same column of the periodic table of chemical elements as carbon, it was thought tin would exhibit similar chemical properties and presumably follow the same rules.

But now, Philip Power and Yang Peng of the University of California, Davis and colleagues have demonstrated a reaction with tin that is forbidden by the Woodward-Hoffmann rules for carbon. The team added bulky hydrocarbon groups to tin in solution, creating a triple bond connecting two tins, each still bound to a hydrocarbon. When the researchers then dissolved ethylene into the solution, the tin atoms loosened their triple grip on each other and picked up ethylenes, forming a ringed structure. If tin followed the carbon rules, the triple bond would not have broken to form rings with ethylene.

This shows, Power says, that “the normal, beautifully simple rules you have for carbon no longer operate effectively for heavier elements.”

Tin, element 50, is the fourth element in the carbon column. With more protons, tin’s nucleus is bigger, heavier and has more charge — so it exerts different forces on the circling electrons. This research indicates that scientists need to think differently about carbon’s metallic neighbors, Sita says. “If we never had this reaction we would never know the current rules are deficient.”

The research also suggests that heavy metals in the carbon column, including tin, lead and germanium, are relatively underexplored and merit more attention from researchers, Sita says.

Squid gets its shine on

A bit of flash usually makes someone stand out, but Loligo squid disguise themselves with shine. Now scientists have illuminated how these squid turn on and tune iridescence by altering the charges of reflective proteins. Scientists knew that when these proteins, called reflectins, self-assemble and pack together, they create reflective plates that shift the shapes of cells and the color of reflected light. But Alison Sweeney of the University of California, Santa Barbara and her colleagues wanted to know how the phenomenon worked. The team first identified new reflectin proteins in Loligo squid. Then the team found that phosphate groups attach to two of these proteins when the squid light up in response to a signal from acetylcholine, a common chemical messenger in nerves. Unassembled reflectins are highly charged, but in iridescent tissue (shown), the phosphate groups neutralized the charges of the reflectins and allowed them to aggregate, the team reports online September 22 in the Journal of the Royal Society Interface. — Rachel Ehrenberg
2009 Nobel Prizes recognize work with telomeres, ribosomes, light

CCDs, improved antibiotics among fruits of laureates’ efforts

News of this year’s Nobel Prize winners spread quickly around the world via the Internet, thanks in part to one of the winners of this year’s Nobel Prize in physics.

Half the physics prize goes to Charles Kao, retired director of engineering at the Standard Telecommunication Laboratories in Harlow, England, for research that enhanced fiber-optic cable for rapid telecommunications. The other half of the $1.4 million prize will be split by Willard Boyle and George Smith, both retired from Bell Laboratories in Murray Hill, N.J. They invented the CCD, a semiconductor device that captures images in digital cameras, telescopes and medical imaging devices.

In physics or medicine, the 2009 Nobel recognizes the discovery of DNA caps on the ends of chromosomes and the enzyme that tacks on those caps. The chemistry prize celebrates research on ribosomes, the protein factories of cells.

In the late 1960s, about 99 percent of the light sent down a glass fiber disappeared after only 20 meters. Kao believed chemical impurities in the glass were to blame and calculated that light could zoom more than 100 kilometers through ultrapure glass. Researchers soon produced a kilometer-long optical fiber, and today more than 1 billion kilometers of fiber-optic cable carry phone calls and Internet traffic worldwide.

“When combined with the laser and the transistor, the invention of an efficient, low-loss optical fiber has made nearly instantaneous communication possible across the entire globe,” says Fred Dylla, director of the American Institute of Physics in College Park, Md.

At about the same time as Kao’s work, Boyle and Smith were seeking a better form of electronic memory when they invented the CCD, or charge-coupled device. CCDs are silicon sensors that harness the photoelectric effect—which Albert Einstein explained in a 1905 paper that earned him the 1921 Nobel Prize—to capture images electronically rather than chemically, as film does.

In the 1970s, the first commercial CCDs measured a mere 100 pixels by 100 pixels, far from the multimegapixel marvels in today’s cameras and medical imaging equipment. CCDs have revolutionized photography, especially for astronomers (SN: 8/26/78, p. 146).

The medicine Nobel Prize recognizes Elizabeth Blackburn of the University of California, San Francisco for identifying telomeres, repeated DNA sequences that cap the ends of chromosomes, in *Tetrahymena*, a single-celled freshwater organism (SN: 11/25/95, p. 362). She shares the prize with Jack Szostak of Harvard Medical School in Boston, who teamed with Blackburn to find that telomeres from *Tetrahymena* prevented degradation of yeast chromosomes. Also sharing the prize is Carol Greider of Johns Hopkins University who, with Blackburn, isolated the enzyme responsible for lengthening telomeres.

Telomeres prevent degradation of DNA during cell division and are important in human diseases of aging, some rare genetic diseases and in cancer.

In chemistry, three researchers will receive the prize for unmasking the structure of the ribosome, research that has led to the development of new antibiotics. Ada Yonath of the Weizmann Institute of Science in Rehovot, Israel, shares the award with Thomas Steitz of Yale University and Venkatraman Ramakrishnan of the MRC Laboratory of Molecular Biology in Cambridge, England.

— Tina Hesman Saey, Sid Perkins and Rachel Ehrenberg
You've probably tried ordinary knee supports and elastic bandages, without getting real relief. But the Barlow® POWER Knee Support is so unusual, so superior, it gives you exceptional support, relief and complete comfort. It's so remarkable it's been patented by the U.S. government. There is absolutely no other knee support like it.

Here's what that means to you. Now you can once again enjoy the day-to-day pleasures like shopping, walking, gardening, going to church or your favorite restaurant... all of the things that now give you pain and distress.

FOR MEN & WOMEN OF ALL AGES

The Barlow® POWER Knee Support is extremely lightweight. Unbelievably comfortable. Provides your knee with maximum lateral and cap support. Helps you absorb shock and prevents twisting. Gives you greater flexibility of movement without feeling like you're wearing a brace or support. Best of all, it is guaranteed to end your knee pain!

The POWER Knee Support was specially developed by Coach “Cotton” Barlow for athletes. But it is ideal for everyone. This fantastic invention uses no metal. It is made of a remarkable material that insulates, warms and soothes your knees – especially helpful for weak, injured or arthritic joints.

30 DAY RISK-FREE OFFER

Remember, if you don't take care of your knees they won't take care of you! Favoring bad knees throws your whole body out of kilter, which can cause shooting back pain, limit your body motion and sap your energy.

Try Coach Barlow's POWER Knee Support for 30 days. If you're not 100% satisfied, return it for a full refund of your purchase price. No questions asked.
The science of slumber

Despite its utter mundanity, sleep resists simple scientific explanation. It appears to recuperate the body and refresh the mind, but exactly how isn’t at all clear. The brain appears to be as active in some of the throes of somnolence as it is in sustaining wakefulness.

By inquiring into all that happens in the brain and body during sleep, researchers aim to paint a more complete picture of why people sleep—and why sleep sometimes goes awry, as Science News staff writers Tina Hesman Saey and Laura Sanders report in this special section.

Scientists seeking the reasons for sleep hope to discover some evolutionary insight: Mammals sleep presumably because it offers some survival advantage. But recent work suggests that explaining sleep as an adaptation for saving energy doesn’t add up. Scientists are skeptical that saving energy is the only (or even the main) reason that sleep has evolved, as described in the article “The why of sleep.”

Extreme fatigue is the closest humans ever come to sleep while still aware enough to ponder its mysteries. At those times, sleep pulls hard, like a current sweeping up a tired mind, carrying consciousness away. How the brain controls this transition between wake and sleep lies at the heart of disorders such as insomnia and narcolepsy, as discussed in “Sleep gone awry.” The third article, “Dying to sleep,” documents what happens when people go without enough sleep. Chronic sleep deprivation poses more serious health risks than many had thought, research shows.

In sleep, the very tool humans use to explore and analyze the world seems to go blank—or, in some dreamy interludes, apparently haywire. No wonder then that scientists, and especially those who study the brain, urgently want to fill in that blank and explain the still largely veiled experience into which most fall thankfully every night. – Eva Emerson

In this section

<table>
<thead>
<tr>
<th>The why of sleep</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>All kinds of tired</td>
<td>23</td>
</tr>
<tr>
<td>Sleep gone awry</td>
<td>24</td>
</tr>
<tr>
<td>Dying to sleep</td>
<td>28</td>
</tr>
</tbody>
</table>

Web edition

Find a list of scientific references or download a PDF of the entire special section at www.sciencenews.org/sleep
The why of sleep

Brain studies may reveal the purpose of a behavior both basic and mystifying. Some of the cells in the sea horse–shaped hippocampus, one of the brain’s most important learning and memory centers. Some of these cells fired bursts of electrical energy as Buddy moved along the track. As he sleeps in his black box, those same cells spark to life again, replaying progress along the track in fast-forward or rapid reverse.

By recording the slumbering Buddy’s brain cell activity, the scientists hope to glean clues to one of biology’s greatest mysteries: the reason for sleep. Although sleep is among the most basic of behaviors, its function has proved elusive. Scientists say sleep’s job is to save energy, or to build up substances needed during waking or to tear down unneeded connections between brain cells. Some emphasize sleep’s special role in learning and memory. Others suggest that sleep regulates emotions. Or strengthens the immune system. And some scientists believe sleep is simply something that emerges naturally from having networks of neurons wired together.

“There are as many theories of sleep’s functions as there are sleep researchers,” says Mehdi Tafti, a geneticist at the University of Lausanne in Switzerland. None of the many models for why people (and other animals) sleep can explain all of its complexity, says Robert Stickgold of Harvard Medical School in Boston. He equates proponents of the different sleep theories to blind men describing an elephant. It’s a snake, or a tree, or a wall, depending on which part of the elephant the men touch. Similarly, the answer to sleep’s function seems to depend on what approach a given researcher takes. And each proposed idea contains inconsistencies that keep other sleep researchers from embracing it.

“There’s no one theory that has enough unified evidence for it to be widely accepted,” says Paul Shaw of Washington University in St. Louis.
Many sleep theories have been widely tested, though. Using brain wave recordings, genetic analyses, word tests, video games and various other methods, researchers have uncovered many of the pieces to the puzzle of sleep, even if they don’t yet all fit together.

Asleep and fired up

Not knowing why humans spend a third of their lives unconscious hasn’t prevented scientists from describing five different stages of sleep from recordings of brain waves. Stage one, marking the transition between awake and asleep, is shallow. Stage two, which lasts the longest, features two forms of brain waves known as spindles and K-complexes (SN Online: 5/21/09). Stages three and four are the deepest, often referred to collectively as slow-wave sleep. Fifth is REM, the stage accompanied by rapid, jerky eye movements.

REM is the stage most often associated with dreaming, but plenty of dreaming occurs in the other sleep stages, too. These stages are repeated in roughly 90-minute cycles throughout the night, with more slow-wave sleep early on and more REM toward morning.

In the first four stages of sleep, heart rate, body temperature and brain activity drop, supporting the view that sleep serves to save energy. But then REM comes along. During REM sleep, the body becomes paralyzed, which keeps people from acting out their dreams.

Although the body is still as stone, the flight-or-fight response system is in overdrive, says Michael Perlis of the University of Pennsylvania in Philadelphia. Brain activity is as high or sometimes even higher than during wakefulness. “The brain is on fire,” during REM, Perlis says. “The brain is cooking, but the body is a cold fish.”

Since the brain burns up to 20 percent of the calories used by the body, REM may consume many of the calories saved during other stages of sleep.

Still, because morning brings renewed vigor, many people believe that sleep must save energy. And sleep certainly feels restorative. Recent genetic work suggests a molecular basis for that refreshment.

Allan Pack, a geneticist at the University of Pennsylvania, and his colleagues have been keeping mice up for hours after their normal bedtime. Activity of 2,000 to 3,000 genes differs in the sleep-deprived mice compared with mice that slumber undisturbed. None of the changes are dramatic, Pack says; they just nudge gene activity up or down a bit. Activity of genes involved in making large molecules consistently goes up during sleep. Examples include genes needed to build cholesterol and the oxygen-carrying substance, called heme, in red blood cells. Genes for molecules that help remodel neural connections are also revved up in sleep.

Studies in mice, rats, fruit flies and white-crowned sparrows have found similar patterns of gene activity, Pack and colleagues noted in a review in the February Trends in Molecular Medicine.

Sleep and wake are part of the metabolic cycle in the brain, Pack says. In this view, sleep is a time for replenishment and construction of cellular parts. “So when wakefulness comes along, you have the building blocks to make synapses,” the junctions between neurons through which signals flow.

From calories to connections

To test the hypothesis that sleep alters metabolism, Amita Sehgal and Susan Harbison of the University of Pennsylvania left the lights on for some fruit flies. Each night for a week, the light deprived the flies of about two hours of sleep. Males made up for the loss by...
sleeping far more than usual the next day. Most females, though, just lost sleep and didn’t make up the difference. The researchers also perturbed the flies’ sleep by mechanical stimulation, which involved randomly jerking the flies’ test tubes. Other flies were bumped while awake during the day, but their sleep was not disturbed.

Whether applied during day or night, mechanical stimulation resulted in decreased stores of glycogen, a starch, and increased triglycerides, a type of fat, the researchers reported in July in *PLoS One*. Light didn’t affect stores of either substance much.

The stress of being jostled, rather than losing sleep, is probably what alters metabolism, at least in these fruit flies, Sehgal says. The study represents a growing trend in sleep science — the idea that sleep offers some advantage besides altering metabolism and saving energy.

“We’re moving away from historical ideas of sleep saving calories,” says James Krueger, a sleep researcher at Washington State University in Pullman. “It does do that, no question. But that’s probably not why sleep evolved.”

Sleep saves about 110 calories — about a cookie’s worth — each night, Krueger says. That’s not enough to make up for missing out on eating, mating or any of the other waking activities an animal does to survive. “It’s a few more nuts. It’s not worth it. You’d rather be awake avoiding predators,” he says.

But sleep must provide some benefit that outweighs waking activities, Krueger says — such as, perhaps, forging connections between neurons.

Krueger, in fact, suggests that sleep itself is an unavoidable result of having neurons wired together in networks. Nerve cells that work hard, electrochemically signaling neighbors, eventually need to rest and recharge. Neural quiet can spread through the brain as neurons pull their wired partners along with them over the brink into sleep, Krueger argues in a December 2008 paper in *Nature Reviews Neuroscience*. The quiet time may allow neurons to strengthen or weaken connections with partners.

Of course, neural remodeling is also important for learning and memory — processes often suggested as sleep’s raison d’être (*SN*: 4/28/07, p. 260).

Breaking bonds

But even sleep’s role in learning and remembering evokes much dispute. One controversial theory, for instance, suggests that sleep, especially the powerful slow-wave variety, weakens synapses. That keeps the brain from filling up with useless connections, say sleep researchers Giulio Tononi and Chiara Cirelli of the University of Wisconsin–Madison. Their theory, known as synaptic homeostasis, is a sort of neuronal version of survival of the fittest. As an animal or person learns things throughout the day, connections between neurons get strengthened. All synapses are weakened during sleep, so tenuous connections are severed altogether and only the strongest bonds between neurons remain. This erasing of the blackboard makes room and preserves resources for the next day’s learning, Cirelli and Tononi contend.

Some experiments seem to support the theory. While awake, rats build up levels of the protein GluR1, which helps increase the strength of synapses, the team reported in the February 2008 *Nature Neuroscience*. Levels of that protein drop when the animals sleep.

Studies of Buddy and other mice, using electrodes implanted in their brains, tend to support the results from kittens. Recordings of the activity of brain cells sensitive to the mice’s location, called “place” neurons, show that sleep allows the brain to replay events, strengthening connections between neurons and preserving long-term memories.

When Young records the firing of Buddy’s neurons, a speaker crackles with what sounds to the untrained listener like radio static. To Young’s ear the static

![Brain reset?](image)

Proteins (orange) that help forge connections between neurons build up in the brain while a fly is awake (left) but are depleted after sleep (right), suggesting sleep prunes neural connections, perhaps ensuring only the day’s strongest memories remain.
Your brain on sleep
The brain orchestrates the daily sleep-wake cycle by responding to external cues, such as sunlight, and the body’s own rhythms. Levels of chemical messengers, hormones and proteins rise and fall in key parts of the brain to generate wakefulness and sleepiness. Tracking brain activity during sleep, scientists have also revealed regions important for other putative functions of sleep, such as memory storage and information processing.

Daily dose of zzz
The circadian system that regulates many of the body’s daily rhythms (including blood pressure, temperature and hunger) also plays an important role in determining bedtimes.
Sunlight helps set the master clock in the brain. In the eye, intrinsically photosensitive retinal ganglion cells sense bright blue and green wavelengths of light and send a daylight signal to the brain.
Located within the hypothalamus, the suprachiasmatic nucleus, or SCN, is made up of a cluster of about 50,000 brain cells. The SCN is the master clock that helps regulate the time of sleeping and waking as well as the rise and fall of body temperature and other body processes.
The pineal gland, located above the cerebellum, produces melatonin, one of the chemicals that helps regulate sleep.
The circadian system balances out the
is the sound of memories being made. Each time an electrode detects electrical activity in one of the neurons, it translates the activity to those audible crackles and to tracings on a computer screen.

While Buddy is awake and moving around in his box, running a maze or exploring new objects, his brain cells fire in a rhythmic pattern. As he sleeps, his brain waves slow down. But small, rapid spurts of brain cell activity, called ripples, interrupt the slow-rolling waves of sleep and burst above the background static. During those ripples, which last a fraction of a second, the place-denoting neurons fire in the same order as when the mouse was awake and exploring.

MIT’s Matthew Wilson was among the first to discover these ripples. Ripples during slow-wave sleep replay the day’s events, but the timing is compressed. During REM sleep, he says, rats and mice also replay events, but in real time, and not always in the same order or way they actually happened.

Cells in the hippocampus fire off a burst of ripple waves first. Then, 100 milliseconds later, cells in the prefrontal cortex, commonly considered to be the seat of the brain’s “executive centers,” take up the refrain, Caltech researchers reported in the Aug. 27 Neuron. Such bursts of activity could represent transfer of information from temporary memory storage in the hippocampus to long-term storage in the cortex, Wilson says. In REM sleep, the timing of the firing between the hippocampus and the cortex is not as tightly coordinated as it is in slow-wave sleep.

Rats relive memories while awake, too, and that replay can help the animals plan their next move, Wilson and colleagues show in the Aug. 27 Neuron.

Scientists have speculated that such replay is also important for forming long-term memories. Researchers in Tonegawa’s lab tested this theory directly: They blocked ripples by essentially paralyzing part of the hippocampus with tetanus toxin. Apart from diminished ripples, the mice slept normally and could remember tracks they had run for a short time. But the mice were unable to form long-term memories, the team reported in the June 25 Neuron. When researchers reversed the effect of the toxin, the ripples returned, along with the ability to form long-term memories, indicating that replaying and rehearsing memories during slow-wave sleep is a key step in solidifying them.

Across the Charles River in Boston, Harvard Medical School researchers have some evidence that replay may also be important for humans. Stickgold and Erin Wamsley have recruited volunteers to play a maze video game. After playing the game, some volunteers take a nap and some stay awake watching videos. The participants are awakened at the first sign that they are about to enter REM sleep, but some still report vivid dreams — some tangentially related to the game, such as hearing the music or exploring bat caves reminiscent of the maze. Preliminary results indicate that people who report game-related dreams improve their performance more when tested again. The dreamers improve more than either people who remained awake and thought about the game or people who slept, but didn’t remember dreaming about the game.

“To us it’s an indication that some of the networks related to that learning are active” during sleep, Wamsley says.

Its importance for memory is the only proposed explanation for sleep that contains a clear reason why consciousness must be shut down, says Stickgold. Human brains don’t have TiVo, with the ability to record one thing while watching another. People use the same brain areas to perceive the world and then process what is happening. To fully digest information gathered throughout the day, at some point the brain has to block more input, he speculates.

In slow-wave sleep, the hippocampus shows home movies of the day’s events to the cortex. During REM sleep, the hippocampus is issued a gag order, leaving the cortex to freely associate different pieces of information without the detail-oriented hippocampus stepping in to say, “no, this is what really happened.” That free association may allow the brain to tie disparate experiences and facts together, making them easier to remem-
ber, or prompting new solutions to problems encountered during the day.

Learning and memory studies also suggest that sleep helps extract the gist of memories, enabling them to be filed under the correct headings, Stickgold says. How the brain does this is illustrated by studies in which participants “remember” that they learned a word such as hospital when actually the list of words they memorized contained doctor, nurse, stethoscope, bed and patient, but not hospital. Such associations give memories context and meaning.

“What your brain is leaving you with in the morning is a memory that is less accurate, but more useful,” Stickgold says.

Sleep researchers still don’t know how the brain decides which memories to review, edit and save, and which are junk, says Matthew Walker of the University of California, Berkeley. Emotion-associated chemicals may mark memories as important and worth saving, or send up a red flag to the brain that the memory is problematic. Over time, as sleep extracts the informational core of memories, it may also strip away the emotional blanket surrounding them, so that a person learns the lesson of the memory without all the drama of emotion. REM sleep in particular “is like group therapy for memories,” he says.

Walker theorizes that this process may go awry in post-traumatic stress disorder. He lays out his case for sleep’s role in processing emotional memories in the Annals of the New York Academy of Science’s Year in Cognitive Neuroscience 2009. Removing the emotional blanket from memories is probably possible only during sleep, when outside stimulus is shut off, he says.

Wilson agrees that sleep can be an unfettered time to come up with new solutions. “The ‘problem’ with the awake state is that it is being influenced by the outside world,” he says. “It is constrained by what you’re currently experiencing. During sleep you can explore. The breadth of experience one has access to is much greater. I think it’s very likely that during sleep you have the flexibility to evaluate and solve problems in novel ways.”

REM sleep may be just what is needed to get creative juices flowing, suggests a study in the June 23 Proceedings of the National Academy of Sciences. People who had a nap with REM sleep performed almost 40 percent better on a word test requiring a creative solution than people who didn’t nap or had only non-REM naps, researchers led by psychologist Sara Mednick of the University of California, San Diego show. The improvement happened only when participants drew information from a seemingly unrelated word test administered earlier in the day to solve the new problems. REM sleep seemed to help make that otherwise unrecognized connection.

“People in the REM group were able to use information they didn’t know they had in their brains,” Mednick says. Still, she doesn’t believe all dreams mean something or that “sleeping on it” will solve every problem.

“Some dreams are going to be very, very meaningful, and some dreams are just your brain rooting through things that don’t mean anything,” she says.
Despite the evidence of sleep's role in brain performance, not all researchers believe that aspect to be the end of the sleep story.

“The notion that sleep is by the brain, for the brain — which is a motto in the field — is outdated,” says Eve Van Cauter of the University of Chicago. “Sleep affects everything in the body and everything in the body affects sleep.”

Short-term studies show that cognitive problems follow sleep deprivation, but scientists have no idea whether those problems relate to longer-term decline in memory or degenerative brain disorders, Van Cauter says.

Nearly 100 studies link sleep loss to cardiovascular disease, she says. “But we don’t even have 10 studies on whether short sleep contributes to cognitive decline or dementia.” (See Page 11.)

Others agree that sleep plays an important role in regulating the immune system. In fact, sleep may have evolved to improve the immune system’s ability to fight off parasites, argue Patrick McNamara of Boston University and his colleagues in the Jan. 9 BMC Evolutionary Biology.

Species of animals that spend more time sleeping each day tend to have higher counts of infection-fighting white blood cells, a database analysis revealed. The more sleep on average a species gets, the fewer parasites plague its members, and the parasites that do infect longer-sleeping species are not as prevalent in their populations as parasites that sicken shorter-sleeping species.

Still, whether sleep’s purpose is fighting parasites, making memories or modifying metabolism remains as much a matter of dispute as the blind men’s competing images of the elephant. But perhaps that parable suggests a strategy for progress.

“The only mistake the blind men made is that they argued with each other,” says Stickgold. If sleep researchers are willing to take a step back, confer and concede that others may have a point, perhaps one day the mystery of sleep will be solved.

Explore more
■ Read Harvard Medical School’s sleep guide at www.understandingsleep.org

All kinds of tired
Donkeys sleep about three out of each 24 hours.

Certain reef fish spend the night moving their fins as if swimming in their sleep. Some biologists argue that all animals sleep in some form or another. But identifying sleep can get complicated.

Insects have brain architecture so different from humans’, for example, that electrophysiological recordings during “sleep” won’t match human patterns. The real problem may be that researchers haven’t agreed on what sleep does for people, so it’s hard to agree on the animal equivalent. Studying animal sleep, though, offers the prospect of discerning evolutionary patterns in sleep pointing to some ancient function. —Susan Milius

Fruit fly 8–10 hours of inactivity each day
Lab fruit flies droop into less-responsive, sleeplike periods mostly at night. If deprived of these quiet bouts, flies spend extra time stationary later, as if catching up. Caffeine keeps them awake, and antihistamines increase downtime. Studies haven’t found REM patterns, but brain activity does shift during the droops.

White-crowned sparrow 3–8 hours (depends on season)
During migration season, white-crowned sparrows perplex researchers with the birds’ apparent power to cheat on sleep. Birds get not quite 40 percent as much sleep as usual, with drops in both slow-wave and REM sleep. Yet the birds don’t get stupid in performance tests.

Platypus 14 hours
From an ancient mammal lineage, the platypus shows REM activity in its brainstem but not simultaneously in its forebrain, as many other mammals do. The platypus forebrain shows non-REM sleeplike activity during this time, though, and the REM session lasts long relative to other mammals.

Armadillo 17–20 hours
Armadillos appear to be prodigious sleepers. The nine-banded armadillo has been clocked sleeping more than 17 hours, and the giant South American armadillo 20 hours, among the longest stretches recorded.

Lab rat 11–14 hours
A lab rat perishes when marooned for weeks on a disk that tips it into water when the rat dozes off. Rats survive other kinds of sleep-deprivation tests, though, inspiring a debate on whether it’s sleep loss or a side effect that is fatal.

White-crowned sparrow 3–8 hours (depends on season)
During migration season, white-crowned sparrows perplex researchers with the birds’ apparent power to cheat on sleep. Birds get not quite 40 percent as much sleep as usual, with drops in both slow-wave and REM sleep. Yet the birds don’t get stupid in performance tests.

Three-toed sloth 9.6 hours (measured in the wild)
Brown-throated three-toed sloths wearing portable recorders became the first free-living animals to have their electroencephalograms studied. Out in the forest, the adult female sloths slept some six hours less in a 24-hour period than captive sloths did. The wild animals’ EEGs showed about two hours in REM sleep.

Giraffe 4–5 hours
Giraffes sleep only a few hours out of 24, but lions, which prey on giraffes, have been clocked snoozing around 13 hours a day. Some researchers have noted a trend toward less sleep in species that, like giraffes, rest in more exposed situations in which they might be more vulnerable to predators.

Bottlenosed dolphin 4 hours (in each brain half)
Bottlenosed dolphins and other cetaceans studied so far show typical mammalian slow-wave brain activity during sleep but in only one brain hemisphere at a time. Researchers have documented little, if any, REM sleep in cetaceans.
Sleep gone awry

Researchers inch closer to causes, cures for insomnia, narcolepsy

By Laura Sanders

If Ben Franklin had been able to live by his own advice, he might have been even healthier, wealthier and wiser. But he was a notorious insomniac, rumored to have been such a poor sleeper that he required two beds so he could always crawl into one with cool sheets when he couldn’t sleep. Getting a good night’s sleep turned out to be more difficult than taming lightning, heating houses or designing bifocal specs.

Today millions of people afflicted by sleep disorders know how Franklin felt. Some people can’t fall asleep even when they’re exhausted. Yet other people fall asleep when they should be wide awake.

Although sleep disorders take many different forms, they do have one thing in common: The more researchers learn, the more they have left to figure out. Sleep problems present a constellation of symptoms, trigger overlapping diagnoses and divulge no clear causes.

“We always feel like we’re one step
away from getting all of the answers,” says Adi Aran of Stanford University, “but I really believe that in the next decade we will understand much more about sleep disorders.”

Already, some recent advances have brought scientists closer to discerning the ultimate causes of such disorders, even suggesting possible treatments. Masashi Yanagisawa of the University of Texas Southwestern Medical Center at Dallas believes researchers are poised to “crack open the black box of sleep regulation.”

Glimpses into that black box suggest that insomnia stems from overactive body systems that conspire to overtake a perfectly functional sleep system. Two reports find that one measure of arousal, blood pressure, is elevated in people with insomnia even while they are asleep.

Other glimpses come from studies of narcolepsy. Scientists have known for almost a decade that narcolepsy is caused by a dearth of a brain communication chemical called orexin. But researchers are still struggling to explain why the neurons that produce orexin are lost in the brains of people with narcolepsy. New evidence implicates a malfunction of the immune system as a likely culprit.

Understanding what goes wrong in sleep disorders such as narcolepsy and insomnia may lead to more targeted treatments. Instead of flooding an insomniac’s brain with a general depressant, clinicians may one day specifically target particular overactive brain regions. Rather than giving people with narcolepsy stimulants that rev up the entire body, preventive measures may halt neuron death before narcolepsy sets in. More generally, understanding these disorders may help researchers create a more complete picture of normal sleep and normal wakefulness, and how bodies and brains transition between the two.

Sleepless nights

For some people, the Franklinesque advice to go to bed early is impossible. Trouble falling asleep or staying asleep (or waking up still tired) is loosely defined as insomnia. It’s a big problem:

The National Center on Sleep Disorders Research reports that 30 to 40 percent of Americans say they suffer insomnia symptoms at least once over the course of a year.

“Almost everybody has insomnia at some point in their life,” says Michael Bonnet of Wright State University’s Boonshoft School of Medicine in Dayton, Ohio.

Sleeplessness may be brought on by traumatic events such as a death in the family, an illness such as cancer or anything else distressing, causing a person to lie awake at night with a racing mind. For a subset of people, though, insomnia has no prompting signal — a condition called primary insomnia.

Regardless of the trigger (or lack thereof), temporary insomnia has a nasty way of becoming a habit. Poor sleep habits can become ingrained. When trouble sleeping persists for three or four nights a week over several months, insomnia is considered chronic.

It may turn out that untangling the prompting signals of insomnia, as many sleep researchers attempt, is a fool’s errand, says Michael Perlis, director of the University of Pennsylvania’s Behavioral Sleep Medicine Program in Philadelphia. “The whole zeitgeist has changed,” he says. Most sleep researchers now agree that “once insomnia goes chronic, it stays that way,” regardless of the prompting signal, Perlis says. So rather than focusing on the immediate trigger for insomnia, many scientists are trying to figure out why it becomes chronic and how to prevent that from happening.

A growing body of evidence supports a hyperarousal explanation of chronic insomnia, in which the sleep centers in the brain are overwhelmed by amped-up “awake” signals.

For instance, people with primary insomnia have higher hormone secretions, higher body metabolism, heightened activity in certain brain regions and elevated heart rates, studies show. Even body temperatures may be raised in people with primary insomnia. This heightened activation is present in the day and remains through the night.

After a traumatic event or a fright, the body and brain are in an aroused state. Heartbeat increases, blood flows faster and stress hormones flood the body, putting the muscles and the brain on high alert, ready to quickly deal with whatever comes next. A mellow version of this excited state might be what keeps people with insomnia awake, Perlis says. People with insomnia don’t constantly have the extreme palpitations that come from an encounter with Freddy Krueger, he says. “We’re hardly talking about panting and heart thumping.”

But the heightened alertness is just enough to interfere with sleeping, making insomnia more of a disorder of wakefulness than of sleep. “Patients with insomnia in general could have a fairly decent sleep system,” Bonnet says. “And...
that's kind of hard for a sleep researcher like myself to say.”

Two reports make the case that people with insomnia are hyperaroused, Bonnet says. A case-controlled study conducted in a Canadian sleep lab found that 13 patients with primary insomnia had higher systolic blood pressure than people in a comparison group. What’s more, those people with insomnia failed to show the characteristic dip in systolic blood pressure when day turns to night. Heightened brain activity at night correlated with higher blood pressure, researchers led by Paola Lanfranchi at the Hôpital du Sacré-Coeur de Montréal reported June 1 in Sleep.

A larger study of 1,741 people from central Pennsylvania found that people with chronic insomnia and short sleep duration (as measured in a sleep lab) were more likely to have high blood pressure. Cardiovascular diseases including strokes and heart attacks may go hand in hand with chronic insomnia, Alexandros Vgontzas of Pennsylvania State University College of Medicine in Hershey and colleagues suggest in their paper in the April 1 Sleep.

Other reports show that regions of the brain remain unduly active in people with insomnia, including the hypothalamus, a brain center important for sleep and arousal. In the not-too-distant future, Bonnet says, scientists may identify the precise brain regions where activity is too high at night, and the regions that tell the body to rev up. “Obviously once you’ve found specific brain areas where you have activation, you can find ways to direct drugs to those areas,” he says.

Treating a disorder before it is fully understood is hard, but researchers are developing some new therapies that seem to work. Several reports over the last few years have explored a treatment called cognitive behavioral therapy for insomnia, or CBTi. The method works by training people to change behaviors that interfere with sleep. Participants are instructed to avoid naps, get out of bed if they’re not sleeping and stop stressing over lost z’s, all steps that can boost sleep. Continued practice of CBTi may reprogram the parts of the brain that control the sleep-wake cycles. “Even though we know not what we deal with, CBTi is highly effective,” says Perlis, a strong proponent of such behavioral interventions.

While peeking into the black box of insomnia reveals an array of overactive body and brain offenders, the black box of another sleep disorder — sleep-inducing narcolepsy — holds just one culprit: a small group of specialized neurons that make a chemical with two names.

Narcobiochemistry

About a decade ago, experiments by Yanagisawa with mice and by other researchers with dogs found that narcolepsy is almost certainly caused by the absence of a single chemical messenger in the brain. This chemical, called orexin by some scientists and hypocretin by others, is produced by a small pocket of neurons in the hypothalamus.

“Narcolepsy is very special in the whole variety of sleep disorders,” Yanagisawa says. “So far, narcolepsy is the only sleep disorder that has been reduced to the biochemical level.”

People lacking orexin-producing neurons fall asleep uncontrollably. In extreme forms of narcolepsy, this happens every one to three hours. Narcoleptic attacks can also be accompanied by a loss of muscle tone, called cataplexy. Severe cataplexy can leave the entire body as limp as a rag doll.

Examining brains from people who had narcolepsy, researchers found that the neurons in the hypothalamus that secrete orexin are almost completely absent. Narcoleptic brains had an 85 to 95 percent reduction in orexin neurons, Jerome Siegel, of the University of California, Los Angeles and his colleagues found. Since that study, published in 2000, scientists have been intent on figuring out how these neurons die, in order to find a way to prevent narcolepsy by helping the cells survive.

One possible suspect is the immune system, which ordinarily protects the body from harmful outside threats. Genetic studies in the 1990s provided a strong hint for the immune system’s role: About 90 percent of people with narcolepsy have the immune gene variant HLA-DQβ1*0602, whereas only about 25 percent of the normal population carries that variant. HLA genes encode
proteins that sit on the outside of cells and help the immune system recognize the body's own cells. In people with this variant, the reasoning goes, self-recognition may be more likely to go awry, causing the immune system to attack this small, important population of neurons in the hypothalamus.

Recent work from Emmanuel Mignot, a sleep researcher at Stanford University, and his colleagues uncovered another immune system link. A study of over 4,000 people found that those with narcolepsy were more likely than others to have a certain DNA letter in part of a gene called the T-cell receptor alpha locus. This gene codes for a protein that recognizes the HLA pattern on the outside of cells. Erroneous readings of the HLA pattern might cause an immune cell to mount an attack on the body's own orexin-producing neurons, the authors hypothesize in a report published in Nature Genetics in June.

Another recent study found that certain bacterial infections might spur the destruction of these neurons. In some diseases, streptococcus infection has been shown to trigger autoimmune attacks. It may signal the body to mistakenly kill orexin neurons too. "It makes sense that these cells die due to some kind of inflammation," says Aran, who collaborated with Mignot on the research, which appeared August 1 in Sleep.

In the study, people with newly diagnosed narcolepsy had higher blood levels of strep antibodies than did controls, suggesting the patients' immune systems were geared up to fight off an infection. What's more, this antibody response lingered for up to three years in people with narcolepsy, whereas the antibody levels go down in just months in most healthy people. "We believe that strep infection might be one of the triggers for narcolepsy," says Aran. "We don't know exactly how, but we believe streptococcus does something."

Identifying the autoimmune response trigger (or triggers) would still not answer the greater mystery, though. Scientists remain baffled by how the immune system conducts such a targeted kill-off of orexin neurons. Almost all of the orexin neurons are destroyed, while other kinds of neurons — even those nearby — remain untouched. Presumably, orexin neurons have some identifying mark that the immune system specifically detects, but so far, that mark is a mystery. "Despite over 15 years of research, no one knows," says Aran.

Current treatments for narcolepsy, while somewhat effective, address only the symptoms, not the underlying loss of neurons. In most cases, once the symptoms show up, the neurons are already gone, says Aran. "If we know the exact pathogen, it might prevent some of the cases," he says. If strep is verified as a trigger, preventing such infections in people — especially those with the particular HLA variant that makes them susceptible — might thwart narcolepsy.

Uncovering the root causes of sleep disorders will undoubtedly lead to better therapies, and maybe even preventions. More than that, though, scientists may have a better chance of learning what happens when sleep goes right — a question that remains largely unanswered — by understanding how sleep goes wrong.

"One of the very satisfying things," Siegel says, "is that it gives you insight into how sleep and wake are controlled."

Explore more
- The National Sleep Foundation website www.sleepfoundation.org

Sleep gone bad

Besides insomnia and narcolepsy, various other disorders can impair sleep. Among them:

Restless legs syndrome

People with restless legs syndrome experience tingling or pricking sensations during periods of stillness, often before falling asleep. This disorder often prevents restful sleep by causing disruptive limb movements.

REM behavior disorder

People with this disorder physically act out their dreams, which are typically frightening or aggressive. It predominantly affects males over age 50 and is usually noticed when a person screams, punches or thrashes violently while asleep.

Circadian rhythm sleep disorders

Caused by extreme mismatches between the normal sleep-wake cycles dictated by a person's environment and the body's natural biological clock, circadian rhythm disorders often lead to excessive sleepiness.

Sleep paralysis

In sleep paralysis, a person is unable to move for a time just before falling asleep or after waking up. Paralysis can be partial or complete and may be accompanied by hallucinations.

Sleep apnea

Sleep apnea occurs when breathing is repeatedly halted during sleep, interrupting both sleep and oxygen flow. The most common form, obstructive sleep apnea, occurs when throat muscles fail to keep the airway open. A rarer form, known as central sleep apnea, occurs when brain signals fail to control breathing. —L.S.
Dying to sleep

Getting too little sleep can impair body and brain, and could even be deadly

By Tina Hesman Saey

For many people, days just don’t seem long enough. In order to cram everything into one 24-hour period, something has to give. Judging by many surveys of Americans, it’s sleep.

Sleep is regarded by some as unproductive, wasteful downtime. People who would rather hit the hay than the dance floor are told that only losers snooze and that they can sleep when they’re dead.

But new data about sleep’s benefits suggest that losing sleep might speed up death’s arrival. Recent research also shows that people who don’t snooze enough face a higher risk of losing their health than those who regularly get a good night’s sleep.

“What is certain is that we can’t do without sleep,” says Peter Meerlo, a neuroscientist at the University of Groningen in the Netherlands.

Some of the consequences of lost sleep are immediate, obvious and unpleasant, such as a toddler’s crabiness after missing a nap. Older children and adults get irritable when tired, too. Sleepy students don’t learn or perform as well as their well-rested peers (SN: 09/09/06, p. 174). And nodding off at work probably won’t help anyone get a promotion.

Other penalties for staying up too late can be far more serious, even deadly. Studies have linked chronic sleep loss to obesity (SN: 11/17/07, p. 318; SN: 4/1/06, p. 195), heart disease, high blood pressure, diabetes (SN: 1/3/09, p. 5; SN: 1/19/08, p. 46) and shorter lives (SN: 2/8/03, p. 85) in people and laboratory animals. And now, a new study links sleep loss in mice to Alzheimer’s disease plaques (SN: 10/24/09, p. 11). And some evidence suggests that stinting on sleep night after night may cause long-term — maybe even permanent — changes in the brain, some of which may predispose people to mental disorders such as depression.

Just one night of short sleep has been shown to increase levels of inflammatory chemicals in the blood (SN: 10/11/08, p. 14) and increase hunger-promoting hormones. A week of getting just two hours less sleep per night than usual changed the way people in one study responded to glucose, mirroring a change seen in people who develop diabetes.

And lack of sleep can also have immediate injurious or fatal consequences: The National Highway Transportation Safety Administration estimates that drowsy-driving crashes result in about 40,000 nonfatal injuries and 1,550 deaths each year, probably a conservative estimate. Now, scientists are trying to understand not only how sleep deprivation affects driving performance, but also why one sleepy person might drive fine while another becomes a road menace.

Too tired to function

Nodding off behind the wheel is a common occurrence in David Dinges’ lab at the University of Pennsylvania School of Medicine in Philadelphia.

Dinges and his colleagues limit volunteers’ time in bed to four hours a night for five nights, then let the volunteers sleep up to 10 hours for two days. The aim of the experiments is to learn more about how the brain responds to the kind of chronic sleep deprivation people experience in real life, and to find out how much sleep is needed to repay the debt.

In the dimly lit laboratory, a volunteer named Heather sits behind the wheel of a driving simulator with electrodes taped to her head. She pushes the accelerator so that her virtual car buzzes along at just over 60 miles per hour on a dark road illuminated only by her headlights. White poles flash by. Suddenly, around a bend, the back of a large cargo truck looms in the darkness. Heather quickly brakes to avoid colliding with the slow-moving truck.

Drowsy driving

More than one-third of U.S. drivers have fallen asleep behind the wheel. While most of those surveyed were startled awake, some crashed.

Percentage of people who have nodded off while driving, by age

Hours slept the night before driving drowsy

Outcome of nodding off while driving

Source: 2002 survey of distracted and drowsy driving/ National Highway Traffic Safety Administration
Sleepy volunteers put pedal to the metal in a University of Pennsylvania driving simulator. Lab technician Christopher Jones demonstrates: electrodes on his head register brain waves on an EEG and the simulator measures his driving performance.
For each of the past four nights, Heather has gotten just four hours of sleep. “My limbs feel heavy,” she reports. She isn’t used to this curtailed sleep schedule. “I never stay up all night,” she says. “I always get my sleep.” She is forgoing shut-eye for a study of genetic differences that may affect people’s responses to sleep deprivation.

The electrodes on Heather’s head are monitoring her brain waves and eye movements so that researchers can detect even brief bouts of sleep. But despite feeling tired, “a little light-headed and dizzy,” Heather hasn’t nodded off when she’s not supposed to, and her performance on the driving simulator and other tests hasn’t deteriorated from her well-rested showing.

The tests in Dinges’ lab have shown just how severely most people’s performance of daily activities can deteriorate with sleep loss. But Heather may be one of a few rare people whose brains don’t become mush when deprived of sleep. By figuring out which genes keep Heather’s brain functioning despite so little sleep, researchers may be able to develop drugs that affect those genes and help ordinary people resist making sleepy mistakes.

James, an architecture student, routinely pulls all-nighters, especially at the end of a semester. He expected to feel horrible after missing out on four hours of sleep each night for several days. “I thought I was going to be like a zombie, not able to process things and short-tempered,” he says. But despite the lab’s dim lighting, “I’m functioning,” he says.

Functioning perhaps, but not as well as he does when well-rested. On this day, he fell asleep while driving the simulator. He woke up to find that he’d smashed into the back of a truck.

James is certainly not alone in misjudging his ability to function while sleepy. Despite evidence to the contrary, many short-sleepers are convinced that they function well on less sleep, Dinges says. One constant is that people are generally not good at predicting how well they will perform when deprived of sleep.

Driving while drowsy was a contributing factor in more than 20 percent of the crashes and near-crashes recorded in a study by researchers at Virginia Tech in Blacksburg. The team fitted 100 cars with cameras and sensors and then recorded drivers’ actions for about a year. A drowsy driver was four to six times more likely to have a crash or near-crash. In contrast, reading, putting on makeup and dialing a cell phone increased crash risks threefold, the researchers found.

No one could have predicted Heather’s and James’ individual responses to sleep deprivation, Dinges says. In his studies, he has found that some people fall apart after missing just a few hours of sleep. Others, like James, show a slow, steady decline in their ability to remain vigilant and sharp on tests as their sleep is cut short over the course of five days. Then there are the people Dinges refers to as “type 1s,” like Heather. Those people’s performance on a variety of attention and response-time tests doesn’t change with five days of restricted sleep. “People are walking around with grossly different brain activity profiles,” Dinges says.

How much is enough

No magic number exists for the amount of sleep people need each night. The “normal” range includes as little as six hours (SN: 9/12/09, p. 11) and as much as 10 hours of sleep per night, depending on the person. But studies of various diseases show that sleeping about seven to eight hours each night carries the least risk of obesity, diabetes, heart disease and other illnesses.

Whatever the need for sleep is, many people don’t get enough. In fact, Americans are sleeping less than ever before, according to the National Sleep Foundation, which conducts periodic surveys of sleep habits. In 2009, 20 percent of survey participants said that they slept less than six hours on weekdays, compared with 12 percent in 1998. That lost sleep isn’t being recovered on weekends, either. On average, respondents in 2009 reported sleeping 7.1 hours on weekend nights, down from an average of 7.8 hours in 1998.

Humans are the only animals that willingly deprive themselves of sleep, says Eve Van Cauter, a sleep researcher at the University of Chicago. “You cannot put a rat in front of the television, give him the remote and tell him, ‘you have to stay awake,’” she says.

People think that they are just too busy to bother with sleep. “We are ignoring that sleep, like exercise and proper feeding, is crucial for health,” Van Cauter says.

Those respondents who slept less than six hours a night were also less likely than people who slept eight hours or more to say that they work well and efficiently, eat healthy diets, engage in leisure activities, exercise or have sex. Short-sleepers also were more likely to smoke, drink caffeinated beverages and eat high-sugar or high-carbohydrate foods.

An analysis of several population studies worldwide showed that children who sleep less than 10 hours a night are nearly twice as likely to be obese compared with children who slept more than 10 hours. The study, published last year in Sleep, also showed that short-sleeping adults (those who got less than five hours of sleep per night) were more likely to be obese, with body mass index increasing with each hour of lost sleep.

Some data suggest that people who sleep far more than average are also at risk for health problems. Both short- and long-sleepers were more likely to have symptoms of “the metabolic syndrome,” a cluster of conditions — including high blood pressure, high cholesterol levels and reduced sensitivity to insulin — that presage diabetes and heart disease.

Among people who get seven to eight hours of sleep each night, only 17 percent had such symptoms, researchers from the University of Pittsburgh and collaborators reported last year in Sleep. But almost a quarter of people regularly sleeping more than eight hours a night had the symptoms, and nearly a third of those getting less than six hours of sleep nightly did too, the researchers reported.

Both short- and long-sleepers were also at higher risk for diabetes than people who sleep seven hours on average, shows another study led by researchers
Effects of sleep deprivation
Losing sleep, even for one night, can trigger a flood of changes throughout the body. Scientists don't fully understand how the sleep-starved body goes awry, but many studies find clear relationships between sleep and the health and function of body systems.

Thymus
Immune system impairment

Brain
Cognitive impairment, declines in memory and judgment, and brain chemical changes that can lead to depression

Attention and sleep
People's performance on an attention test declines with sleep loss (left), even though they don't feel much sleepier (right). SOURCE: VAN DONGEN ET AL. / SLEEP 2003

Stomach
Increased hunger

Pancreas
Insulin resistance and higher risk of type 2 diabetes

Fat layer
Increased risk of obesity

Body mass index and sleep

Heart
Higher disease risk, irregular heart beat

Blood pressure and sleep

Joints
Increased inflammation, which can lead to atherosclerosis (artery hardening) and rheumatoid arthritis

Metabolism
Higher risk of “the metabolic syndrome,” which includes high blood pressure and cholesterol and reduced insulin sensitivity, sometimes leading to diabetes and heart disease

Muscle
Decreased reaction time and accuracy
at Columbia University and published in *Sleep* in 2007.

Most people are fooling themselves if they think they need less sleep than average, Van Cauter says. A study of healthy young adults, published in 2005 in *Sleep*, seems to back her up. Volunteers were given the opportunity to get some extra shut-eye for three days in a study conducted by researchers at Harvard Medical School in Boston and the University of Surrey in Guildford, England. Everybody slept more the first day of the study, but by day three, people who normally sleep more than nine hours a day had maxed out their sleep. People who normally slept less continued to catch extra z’s. The researchers concluded that people with shorter sleep times probably carry a bigger sleep debt than others, one that couldn’t be paid back in three days.

Sleeping in your genes

Researchers would dearly love to know what makes people like Heather resistant to the attention-degrading effects of sleep loss. (Though scientists don’t know whether these people’s bodies hold up against sleep deprivation as well as their brains do.) Studies of twins suggest that a large part of the resistance is genetic: Identical twins’ responses to sleep deprivation are as similar to each other as an individual’s results in repeated tests.

Previously, researchers reported that a gene called PERIOD3, or PER3, might be involved in the response to sleep deprivation. (SN: 3/24/2007, p. 190). PER3, a cousin of genes involved in the circadian clock, which governs daily body rhythms including meal times and bedtimes, comes in two common forms. The more common form contains four repeats of a segment of the gene, and a less-common variant contains five repeats of that segment. People who have inherited two copies of the longer form tend to be morning people, while people with two copies of the shorter form tend to be night owls.

When their circadian alertness level was at its lowest daily point, sleep-deprived people with the long form performed worse on some tasks than people with the short gene, researchers led by Derk-Jan Dijk at the University of Surrey reported in 2008 in *Sleep*. Many researchers interpret that result to mean that the long form of the gene makes people more vulnerable to sleep deprivation.

But people with different forms of the PER3 gene didn’t show any differences in responses to partial sleep deprivation over five nights in a study by Dinges and colleagues published online June 11 in *PLoS ONE*. The two results can’t be directly compared, because the volunteers in Dinges’ study were asleep during the time of day that the Surrey group found differences in performance. So the jury is still out on whether PER3 protects some people against the effects of sleep deprivation, and researchers are hunting for other genes that may contribute to differences in sensitivity to sleep loss.

No snooze, you lose

All the consequences for chronically missing out on slumber aren’t yet known, but some studies suggest sleeping too little for too long can change the brain. In a study in rats, Meerlo examined serotonin — a brain chemical thought to be important in sleep, depression and many brain functions. The researchers didn’t find any changes in the rats’ brains after a single night of sleep loss, but after a week of getting shortchanged, the rats’ brains became less sensitive to serotonin. Such changes could make rats, and people, more prone to developing depression, Meerlo says.

As bad as that news potentially is, Meerlo has worse news. Even after he let the rats sleep in on the weekend, their brains still didn’t respond to serotonin as effectively as before sleep deprivation, Meerlo and his colleagues reported last year in *Sleep*.

Even more disturbing is the finding from a study of sleep deprivation in rats conducted by researchers at Northwestern University in Evanston, Ill. The researchers found that rats deprived of about 35 hours of sleep over five days — an extreme sleep loss — didn’t make up that lost sleep when given three days to do nothing but sleep. The result, reported in the *Proceedings of the National Academy of Sciences* in 2007, suggests that chronic sleep loss may actually prevent the body from sleeping more to recover.

“That would limit your ability to make up your sleep debt,” Van Cauter says. And sleep deficit is a debt you can’t afford, Meerlo says. “One night of missed sleep isn’t going to kill you,” he says, “but the danger is that if you’re not getting enough sleep night after night, small cumulative effects could add up.”

So while you may be dying to stay up one more hour to finish reading that chapter or reach one more level on that video game, researchers say that in the long run, you could be inching closer to a state of permanent rest.

Sleeping about seven to eight hours per night carries the least risk of obesity, diabetes, heart disease and other illnesses. Whatever the need for sleep is, many people are not getting enough.

Explore more

Technology has given us 24/7 LIVES... and 24/7 STRESS.

What if technology gave us a Good 8 hours back?

Introducing the TEMPUR® Advanced ERGOSystem

This is the sleep system that could only have come from Tempur-Pedic®. An infinite number of ergonomic rest positions, plus a rejuvenating massage whenever you’d like. With its wireless remote, it electronically adjusts to your every need... this is a place of true Night-time Renewal for body and mind.™

We invite you to learn more about our science and experience our soul. Visit www.tempurpedic.com or call 1-888-225-9341.
Biofuel feedback

“The biofuel future” (SN: 8/1/09, p. 24) proved very enjoyable reading. However, the future and direction of biofuels will be determined by politicians, not scientists. Scientists seem to use crazy things like facts, research and logic to determine the most efficient way to convert plants to fuel. I find it incredible that we are now converting food-grade corn into fuel, when so many children in the world are starving. Seems like it would be better to swap corn for crude oil and feed people.

Richard Garon, Gonzales, La.

I very much enjoyed this article. It takes a complex subject and makes it approachable to the, ahem, less scientifically inclined. The writing is fresh and entertaining. Nicely done.

Shelley Dayton, San Francisco

The march towards biofuels is necessary, as we need to move away from fossil fuels. However, no real environmental progress will be made until we can utilize whatever fuel we have better… Thus as much research should be expended in improvements in energy conversion, not just incremental improvements in existing systems.

Dave Starr, Littleton, Colo.

Your article missed a very useful plant — hemp. Although hemp’s whole biomass could be used for ethanol production or to provide consistency of feedstock supply, hemp’s long fibers make it a durable and valuable fabric and paper raw material. Its seeds can be pressed for their oil that could be used for biofuel or as the highest plant source of omega-3 fatty acids. The resultant seed cake rivals soy in protein content and essential amino acids. The plant grows easily in both tropical and temperate climates, does better with increasing ultraviolet radiation (which is increasing due to atmospheric ozone depletion) and reduces soil runoff due to its tenacious root system. I do not think this ecologically useful plant should be relegated to a black hole because a variant of the agricultural hemp plant, marijuana, itself an herb with extensive medicinal properties, is inappropriately disapproved of by our government.

Gene Tinelli, Jamesville, N.Y.

While efforts to make liquid fuels from biomass are laudable and may yet pan out, a solid fuel approach could provide the much-needed fast track for realizing the benefits of this carbon neutral, homegrown energy resource. Wood pellets, usually made of compressed sawdust (resolving the density issue), are one example. Popular in Europe, they are used on a residential, commercial and (often cofired with coal) utility scale. But the plant material offering the greatest potential for such treatment would, no doubt, be highly prolific, wastewater- and CO$_2$-loving, easily grown, wild algae. Think green “coal” on a large scale.

Many microbes produce hydrocarbons, including G. roseum, which can digest cellulose, although research reported last year suggests that fuel yields are lower than desirable. Several readers wrote in about other promising biofuel organisms and approaches, including hemp and salt-tolerant plants such as succulent species of Salicornia, that did not appear in my article because of lack of space. The breadth of possibilities is extensive, possibly foreshadowing a diverse, rich energy portfolio for the future. —Rachel Ehrenberg

Correction

Janet Raloff’s feature article about the current shortage of radioactive isotope feedstocks for use in nuclear medicine (“Desperately seeking moly,” SN: 9/26/09, p. 16) did not accurately describe the methods Phoenix Nuclear Labs plans to use. The company intends to use a beam of deuterium ions, not electrons as was stated, and the process could (and probably will) use uranium as a feedstock to produce the isotope Mo-99.

Send communications to:
Editor, Science News
1719 N Street, NW
Washington, D.C. 20036
or editors@sciencenews.org
All letters subject to editing.
Why Does E=mc²? (And Why Should We Care?)
Brian Cox and Jeff Forshaw
By exploring each part of Albert Einstein’s famous equation, two physicists ultimately explain the theory of relativity. Da Capo Press, 2009, 249 p., $24.

Simulation and Its Discontents
Sherry Turkle
Computer simulation has altered standard practices in science and engineering, but its ubiquity has drawbacks. MIT Press, 2009, 217 p., $22.

The Medicine Cabinet of Curiosities
Nicholas Bakalar
This is a book for people who want to impress others at cocktail parties. Brimming with odd tidbits of knowledge about the human body and health, it provides a wealth of “did you know?” conversation starters.

In the book’s introduction, New York Times columnist Bakalar describes Medicine Cabinet as a “random collection, put together with no more direction than that offered by the author’s impulses.” Readers looking for a comprehensive review of medical conditions will be sorely disappointed. But those who take the lighthearted book at face value will learn a lot. For example, if you’re hit with the sniffles on the streets of New York City, the nearest tissues may be in a passing ambulance. Every ambulance must carry exactly one box, according to rules set by the New York State Emergency Medical Services.

The entries are organized into chapters that are loosely grouped by themes including health statistics, infectious diseases and common causes of death. Within chapters, though, topics transition on the turn of a phrase: A discussion of breast and testicular implants in a chapter on discoveries moves quickly into a list of diseases named for the doctors who first described them.

Despite his hops, skips and whimsical tone, Bakalar avoids inanities. Complex topics, such as the debate over the health benefits of cranberry juice, are reviewed with humor and intelligence. As such, the book may give you a leg up at your next social engagement. But save the section on hemorrhagic fevers for after dinner. — Rachel Zelkowitz

The Senator Cape
NOW ON SALE!!
$100.00 OFF!!

Warm and elegant in 100% merino wool. Handsome elegance surpasses your everyday overcoat. Shoulder details and pewter buttons finish the garment.
Reg: was $430, now $330.
Long: was $450, now $350.
While supplies last.
Black, Charcoal, Navy, Camel. Also available in 100% cashmere in black. Made in Maine.
1-888-222-WOOL (9665) or online at www.cascobaywoolworks.com

The Senator Cape
NOW ON SALE!!
$100.00 OFF!!

Warm and elegant in 100% merino wool. Handsome elegance surpasses your everyday overcoat. Shoulder details and pewter buttons finish the garment.
Reg: was $430, now $330.
Long: was $450, now $350.
While supplies last.
Black, Charcoal, Navy, Camel. Also available in 100% cashmere in black. Made in Maine.
1-888-222-WOOL (9665) or online at www.cascobaywoolworks.com

Give the gift of ScienceNews
Save time, save money and give the magazine that covers science in a biweekly, user-friendly format.
www.sciencenews.org/gift

Mu Alpha Theta
The National High School and Two-Year College Mathematics Honor Society
mualphatheta.org
Start a chapter at your school today!
• Honor talented math students
• Scholarships & Grants
• Free math competitions
• Honor Cords & Jewelry
matheta@ou.edu

Mu Alpha Theta
The National High School and Two-Year College Mathematics Honor Society
mualphatheta.org
Start a chapter at your school today!
• Honor talented math students
• Scholarships & Grants
• Free math competitions
• Honor Cords & Jewelry
matheta@ou.edu

www.sciencenews.org/gift

How to Order To order these books or others, visit www.sciencenews.org/bookshelf. A click on a book’s title will transfer you to Amazon.com.
It’s time to reform work hours for resident physicians

Last year, the American medical profession admitted that its century-old tradition of sleep-depriving physicians-in-training is unsafe. Working day and night, rather than transferring patient care to a fresh doctor, increases serious medical errors in ICUs by 36 percent, including a 460 percent increase in serious diagnostic mistakes. Twenty-four hours without sleep slows reaction time comparably to alcohol intoxication. Physician-trainees routinely fall asleep during lectures, on patient rounds, while examining patients and even during surgery.

Sleep deprivation impedes memory consolidation and degrades physicians’ clinical performance to the 7th percentile of rested performance. After working more than 24 hours, resident physicians are 73 percent more likely to stab themselves with a needle and 168 percent more likely to crash driving home. One-quarter of them make most sleep-related errors, likely due to sleep disorders or differential vulnerability to sleep loss, which may be genetic. Yet resident physicians with medical conditions that put them and patients at greater risk from sleep deprivation caused by working conditions requiring 30-hour shifts twice per week are seldom provided with a reasonable accommodation.

In 2006, the Harvard Work Hours, Health and Safety Group reported that one in five resident-physicians admitted making a fatigue-related mistake that injured a patient. One in 20 admitted a fatigue-related mistake that resulted in a patient’s death. As a consequence, a U.S. House committee requested the Agency for Healthcare Research and Quality to commission the Institute of Medicine to determine whether long resident work hours compromise patient safety. After studying decades of research and hearing expert testimony, the IOM concluded what many find obvious: the extended duty 30-hour shifts permitted in the current ACGME (Accreditation Council for Graduate Medical Education) limits on resident duty hours “promote conditions for fatigue-related errors that pose risks to both patients and residents.” The IOM recommended that resident physicians should not work more than 16 hours without sleep, should not be awakened from sleep to treat patients and should not drive home after work shifts longer than 16 hours.

This is an important step toward reforming a U.S. tradition established at Johns Hopkins in the 1890s by William Halsted, whose cocaine addiction perhaps clouded his judgment as to how long physicians could safely work. New Zealand has limited physician-trainees to 16-hour shifts since 1985. The European Union limits work shifts to 13 hours, requiring 11 consecutive hours off daily. Unfortunately, organized medicine has stalled implementation of the IOM recommendations. When other arguments fail, the claim is made that resident work-hour reform is too costly, despite the reality that taxpayers already pay all medical school costs of residency training many times over. Medicare funds teaching hospitals with about $10 billion annually for the 100,000 physicians-in-training in the United States — often paying nearly triple residents’ salaries. Medicare and private insurers then pay those same hospitals again for the medical services residents render. Yet, despite these subsidies, no federal regulations limit the work-hour limits that sanctioned twice-per-week 30-hour shifts rather than eliminating them, refusing to disclose work-hour compliance data from member hospitals, failing to provide whistle-blower protection, abiding falsification of resident work-hour records, and allowing 84 percent non-adherence to current ACGME work-hour limits.

By the residents’ own admission, tens of thousands of patients and residents are injured and thousands of patients lose their lives annually from fatigue-related errors. Many safety-sensitive workers have work-hour limits, including airline pilots and nuclear power engineers. Congress should implement meaningful resident-physician work-hour reform based on the IOM recommendations to prevent these unnecessary tragedies.

Charles A. Czeisler is director of the Division of Sleep Medicine at Harvard Medical School and chief of sleep medicine at Brigham and Women’s Hospital. Read more at understandingsleep.org
Why Is Chemistry the Easiest Class in School?

Is high school chemistry so intrinsically difficult that it takes heroic efforts for students to master it? Award-winning Professor Frank Cardulla—winner of a Presidential Award for Science Teaching—doesn’t believe that for a moment. In the 36 accessible lectures of *Chemistry, 2nd Edition*, he will convince you, as he has thousands of high school students, that “chemistry is the easiest class in school.”

Professor Cardulla refuses to have students learn mathematical “gimmicks” that allow them to obtain answers without any real understanding. Instead, he establishes a firm foundation based on a strong grasp of basic concepts and the application of everyday quantitative reasoning to chemistry problems. Originally created for a high school audience, this course is a useful tool for anyone interested in the subject.

This course is one of The Great Courses®, a noncredit, recorded college lecture series from The Teaching Company®. Award-winning professors of a wide array of subjects in the sciences and the liberal arts have made more than 300 college-level courses that are available now on our website.
NEW PJs?
You won’t need them on your Savvy Rest.

Savvy Rest mattresses are not made with PDBEs, formaldehyde, TDI, flame retardants, insecticides, antifungals, or petroleum derivatives. Most mattresses are.

Savvy Rest mattresses are made with:

• Natural latex rubber
• Certified organic cotton fabric
• Certified organic wool batting

Naturally hypoallergenic and nontoxic, a Savvy Rest is:

• Supremely comfortable
• Customized for each person (on each side)
• Changeable (removable layers; 90-day latex exchange)
• Durable (20-year warranty)