Making Data Work
Researchers pursue analogy between statistical evidence and thermodynamics
A fundamental problem for almost all science is how to tell a fluke from a fact.
It’s usually very hard to know whether an experiment’s result reflects a truth of nature or a random accident. So scientists use elaborate math to gauge the odds that a finding is bogus. But those odds rarely offer definitive evidence — or even much evidence at all. In fact, evidence in science is a slippery concept. It’s kind of like the U.S. Supreme Court’s idea of pornography: Scientists supposedly know evidence when they see it.
But they don’t know precisely how much evidence they’ve got; standard mathematical tricks for drawing inferences do not translate statistical data into a quantitative measure of evidential weight. Whether assessing the cancer risk from a food additive, the curative power of a new medicine or the results of an athlete’s drug test, evidence pro and con cannot be easily quantified, compared or objectively added up. For today’s scientists, weighing evidence is like measuring temperature before the invention of the thermometer.