Insightful Light
Raman spectroscopy may offer doctors, dentists and forensic scientists a better tool for molecular detection
From CT, PET and MRI to the original X, a vast alphabetical arsenal of tools tells doctors what is going on inside the body. But despite their successes, these tools often fail to detect the subtle changes that signal the imminent onset of illness. Mischief at the molecular level often evades doctors’ current imaging and detection abilities. So for sensing such changes, biomedical scientists are taking a tip from chemists. Using a method known as Raman spectroscopy, medical detectives are moving ever closer to exploiting the power of light to improve disease detection.
Long used in labs, spectroscopy employs light and other types of electromagnetic radiation to analyze matter. The various spectroscopic techniques reveal a molecule’s unique chemical fingerprint by measuring the wavelengths of light that the molecule absorbs or emits, or by tracking how radiation scatters after interacting with a molecule. For 30 years, scientists have been eager to harness the power of Raman spectroscopy, a type of scattering spectroscopy, to image the body at the level of individual molecules. The method holds promise for pinpointing the beginnings of dental cavities and tumors. And it could even help forensic investigators nab killers sooner by lifting latent fingerprints from corpses.
A variety of researchers, from dentists and doctors to chemists, now report some of the first successes using Raman spectroscopy to probe chemicals and minerals within and on living — and dead — bodies. “Raman spectroscopy is a very powerful tool,” says Cristina Zavaleta, a molecular imaging radiologist at StanfordUniversity. But, she adds, the technique still needs some time to develop.